1
|
Minato H, Endo R, Kurata Y, Notsu T, Kinugasa Y, Wakimizu T, Tsuneto M, Shirayoshi Y, Ninomiya H, Yamamoto K, Hisatome I, Otsuki A. Azelnidipine protects HL-1 cardiomyocytes from hypoxia/reoxygenation injury by enhancement of NO production independently of effects on gene expression. Heart Vessels 2024; 39:899-908. [PMID: 38797744 DOI: 10.1007/s00380-024-02415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
It remains to be elucidated whether Ca2+ antagonists induce pharmacological preconditioning to protect the heart against ischemia/reperfusion injury. The aim of this study was to determine whether and how pretreatment with a Ca2+ antagonist, azelnidipine, could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury in vitro. Using HL-1 cardiomyocytes, we studied effects of azelnidipine on NO synthase (NOS) expression, NO production, cell death and apoptosis during H/R. Action potential durations (APDs) were determined by the whole-cell patch-clamp technique. Azelnidipine enhanced endothelial NOS phosphorylation and NO production in HL-1 cells under normoxia, which was abolished by a heat shock protein 90 inhibitor, geldanamycin, and an antioxidant, N-acetylcysteine. Pretreatment with azelnidipine reduced cell death and shortened APDs during H/R. These effects of azelnidipine were diminished by a NOS inhibitor, L-NAME, but were influenced by neither a T-type Ca2+ channel inhibitor, NiCl2, nor a N-type Ca2+ channel inhibitor, ω-conotoxin. The azelnidipine-induced reduction in cell death was not significantly enhanced by either additional azelnidipine treatment during H/R or increasing extracellular Ca2+ concentrations. RNA sequence (RNA-seq) data indicated that azelnidipine-induced attenuation of cell death, which depended on enhanced NO production, did not involve any significant modifications of gene expression responsible for the NO/cGMP/PKG pathway. We conclude that pretreatment with azelnidipine protects HL-1 cardiomyocytes against H/R injury via NO-dependent APD shortening and L-type Ca2+ channel blockade independently of effects on gene expression.
Collapse
Affiliation(s)
- Hiroyuki Minato
- Department of Anesthesiology, Tottori University Faculty of Medicine, 86 Nishi-Cho, Yonago, 683-8503, Japan
| | - Ryo Endo
- Department of Anesthesiology, Tottori University Faculty of Medicine, 86 Nishi-Cho, Yonago, 683-8503, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Ishikawa, 920-0293, Japan.
| | - Tomomi Notsu
- Department of Genomic Medicine and Regenerative Therapy, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Yoshiharu Kinugasa
- Department of Cardiovascular Medicine, and Endocrinology and Metabolism, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Takayuki Wakimizu
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, 251-8555, Japan
| | - Motokazu Tsuneto
- Department of Genomic Medicine and Regenerative Therapy, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Yasuaki Shirayoshi
- Department of Genomic Medicine and Regenerative Therapy, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University, Yonago, 683-8503, Japan
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine, and Endocrinology and Metabolism, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Ichiro Hisatome
- Department of Cardiology, NHO Yonago Medical Center, Yonago, 683-0006, Japan
| | - Akihiro Otsuki
- Department of Anesthesiology, Tottori University Faculty of Medicine, 86 Nishi-Cho, Yonago, 683-8503, Japan
| |
Collapse
|
2
|
Preconditioning with PDE1 Inhibitors and Moderate-Intensity Training Positively Affect Systemic Redox State of Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6361703. [PMID: 32104536 PMCID: PMC7035562 DOI: 10.1155/2020/6361703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/29/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Taken into consideration that oxidative stress response after preconditioning with phosphodiesterase inhibitors (PDEIs) and moderate physical activity has still not been clarified, the aim of this study was to assess the effects of PDEIs alone or in combination with physical activity, on systemic redox status. The study was carried out on 96 male Wistar albino rats classified into two groups. The first group included animals exposed only to pharmacological preconditioning (PreC) maneuver (sedentary control (CTRL, 1 ml/day saline, n = 12), nicardipine (6 mg/kg/day of NIC, n = 12), vinpocetine (10 mg/kg/day of VIN, n = 12), and nimodipine (NIM 10 mg/kg/day of, n = 12). The second included animals exposed to preconditioning with moderate-intensity training (MIT) on treadmill for 8 weeks. After 5 weeks from the start of training, the animals were divided into four subgroups depending on the medication to be used for pharmacological PreC: moderate-intensity training (MIT+ 1 ml/day saline, n = 12), nicardipine (MIT+ 6 mg/kg/day of NIC, n = 12), vinpocetine (MIT+ 10 mg/kg/day of VIN, n = 12), and nimodipine (MIT+ 10 mg/kg/day of NIM, n = 12). After three weeks of pharmacological preconditioning, the animals were sacrificed. The following oxidative stress parameters were measured spectrophotometrically: nitrites (NO2−), superoxide anion radical (O2−), hydrogen peroxide (H2O2), index of lipid peroxidation (TBARS), superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH). Our results showed that PDE1 and MIT preconditioning decreased the release of prooxidants and improved the activity of antioxidant enzymes thus preventing systemic oxidative stress.
Collapse
|
3
|
Minato H, Hisatome I, Kurata Y, Notsu T, Nakasone N, Ninomiya H, Hamada T, Tomomori T, Okamura A, Miake J, Tsuneto M, Shirayoshi Y, Endo R, Otsuki A, Okada F, Inagaki Y. Pretreatment with cilnidipine attenuates hypoxia/reoxygenation injury in HL-1 cardiomyocytes through enhanced NO production and action potential shortening. Hypertens Res 2020; 43:380-388. [PMID: 31942044 DOI: 10.1038/s41440-019-0391-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 11/09/2022]
Abstract
Myocardial ischemia/reperfusion injury worsens in the absence of nitric oxide synthase (NOS). Cilnidipine, a Ca2+ channel blocker, has been reported to activate endothelial NOS (eNOS) and increases nitric oxide (NO) in vascular endothelial cells. We examined whether pretreatment with cilnidipine could attenuate cardiac cell deaths including apoptosis caused by hypoxia/reoxygenation (H/R) injury. HL-1 mouse atrial myocytes as well as H9c2 rat ventricular cells were exposed to H/R, and cell viability was evaluated by an autoanalyzer and flow cytometry; eNOS expression, NO production, and electrophysiological properties were also evaluated by western blotting, colorimetry, and patch clamping, respectively, in the absence and presence of cilnidipine. Cilnidipine enhanced phosphorylation of eNOS and NO production in a concentration-dependent manner, which was abolished by siRNAs against eNOS or an Hsp90 inhibitor, geldanamycin. Pretreatment with cilnidipine attenuated cell deaths including apoptosis during H/R; this effect was reproduced by an NO donor and a xanthine oxidase inhibitor. The NOS inhibitor L-NAME abolished the protective action of cilnidipine. Pretreatment with cilnidipine also attenuated H9c2 cell death during H/R. Additional cilnidipine treatment during H/R did not significantly enhance its protective action. There was no significant difference in the protective effect of cilnidipine under normal and high Ca2+ conditions. Action potential duration (APD) of HL-1 cells was shortened by cilnidipine, with this shortening augmented after H/R. L-NAME attenuated the APD shortening caused by cilnidipine. These findings indicate that cilnidipine enhances NO production, shortens APD in part by L-type Ca2+ channel block, and thereby prevents HL-1 cell deaths during H/R.
Collapse
Affiliation(s)
- Hiroyuki Minato
- Department of Anesthesiology and Critical Care Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Ishikawa, 920-0268, Japan.
| | - Tomomi Notsu
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Naoe Nakasone
- Department of Biological Regulation, Tottori University, Yonago, 683-8503, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Tottori University, Yonago, 683-8503, Japan
| | - Toshihiro Hamada
- Department of Community-Based Family Medicine, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Takuya Tomomori
- Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Akihiro Okamura
- Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Motokazu Tsuneto
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Yasuaki Shirayoshi
- Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Ryo Endo
- Department of Anesthesiology and Critical Care Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Akihiro Otsuki
- Department of Anesthesiology and Critical Care Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, 683-8503, Japan
| | - Yoshimi Inagaki
- Department of Anesthesiology and Critical Care Medicine, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago, 683-8503, Japan
| |
Collapse
|
4
|
Exosomes Derived from TIMP2-Modified Human Umbilical Cord Mesenchymal Stem Cells Enhance the Repair Effect in Rat Model with Myocardial Infarction Possibly by the Akt/Sfrp2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1958941. [PMID: 31182988 PMCID: PMC6512021 DOI: 10.1155/2019/1958941] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) are a promising new therapeutic option for myocardial infarction (MI). The tissue matrix metalloproteinase inhibitor 2, also known as TIMP2, is a member of the tissue inhibitor family of metalloproteinases. Since TIMP2-mediated inhibition of matrix metalloproteinases (MMPs) is a key determinant of post-MI remodeling, we analyzed the therapeutic effects of exosomes derived from TIMP2-overexpressing hucMSCs (huc-exoTIMP2) on the MI rat model. The huc-exoTIMP2 significantly improved in vivo cardiac function as measured by echocardiography and promoted angiogenesis in MI injury. It also restricted extracellular matrix (ECM) remodeling, as indicated by the reduced collagen deposition. In addition, huc-exoTIMP2 administration increased the in situ expression of the antiapoptotic Bcl-2 and decreased that of the proapoptotic Bax and pro-caspase-9 in the infracted myocardium. Meanwhile, huc-exoTIMP2 upregulated superoxide dismutase (SOD) as well as glutathione (GSH) and decreased the malondialdehyde (MDA) level in MI models. In vitro huc-exoTIMP2 pretreatment could inhibit H2O2-mediated H9C2-cardiomyocyte apoptosis and promote human umbilical vein endothelial cell (HUVEC) proliferation, migration, and tube formation, as well as decrease TGFβ-induced MMP2, MMP9, and α-SMA secretion by cardiac fibroblasts (CFs). Besides that, huc-exoTIMP2 pretreatment also increased the expression of Akt phosphorylation in the infarcted myocardium, which may relate to a high level of secreted frizzled-related protein 2 (Sfrp2) in huc-exoTIMP2, indicating a mechanistic basis of its action. Importantly, Sfrp2 knockdown in huc-exoTIMP2 abrogated the protective effects. Taken together, huc-exoTIMP2 improved cardiac function by alleviating MI-induced oxidative stress and ECM remodeling, partly via the Akt/Sfrp2 pathway.
Collapse
|
5
|
Krzywonos-Zawadzka A, Franczak A, Sawicki G, Woźniak M, Bil-Lula I. Multidrug prevention or therapy of ischemia-reperfusion injury of the heart-Mini-review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:55-59. [PMID: 28826125 DOI: 10.1016/j.etap.2017.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/05/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Restoration of blood flow to myocardium previously subjected to ischemia leads to ischemia/reperfusion injury due to oxidative stress. An increased production of toxic peroxynitrite, an enhanced phosphorylation and nitration/nitrosylation of myocyte contractile proteins and overactivation of matrix metalloproteinases -are only one of the several causes of heart damage. Multifactorial basis of ischemia/reperfusion injury demands the use of multiple pharmacological agents, inhibiting several pathways of cardiac injury. Nevertheless, the use of these drugs in their therapeutic doses, apart from their role in the treatment of pathological events, may also disturb physiological processes leading to numerous side-effects. Therefore current preclinical studies focuses on multidrug therapies in their low concentration. Synergistic or additive effect of low multidrug therapy inhibit pathological processes while maintaining the proper cell function and avoid alteration of physiological role of important functional proteins. This study provides information about multidrug strategies for the prevention/treatment of cardiac injury induced by oxidative stress.
Collapse
Affiliation(s)
- Anna Krzywonos-Zawadzka
- Department of Clinical Chemistry, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland.
| | - Aleksandra Franczak
- Department of Clinical Chemistry, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland.
| | - Grzegorz Sawicki
- Department of Clinical Chemistry, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Mieczysław Woźniak
- Department of Clinical Chemistry, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland.
| | - Iwona Bil-Lula
- Department of Clinical Chemistry, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland.
| |
Collapse
|
6
|
Zhang JY, Kong LH, Lai D, Jin ZX, Gu XM, Zhou JJ. Glutamate protects against Ca(2+) paradox-induced injury and inhibits calpain activity in isolated rat hearts. Clin Exp Pharmacol Physiol 2017; 43:951-9. [PMID: 27279457 DOI: 10.1111/1440-1681.12605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 04/25/2016] [Accepted: 06/02/2016] [Indexed: 01/13/2023]
Abstract
This study determined the effects of glutamate on the Ca(2+) paradoxical heart, which is a model for Ca(2+) overload-induced injury during myocardial ischaemia and reperfusion, and evaluated its effect on a known mediator of injury, calpain. An isolated rat heart was retrogradely perfused in a Langendorff apparatus. Ca(2+) paradox was elicited via perfusion with a Ca(2+) -free Krebs-Henseleit (KH) solution for 3 minutes followed by Ca(2+) -containing normal KH solution for 30 minutes. The Ca(2+) paradoxical heart exhibited almost no viable tissue on triphenyltetrazolium chloride staining and markedly increased LDH release, caspase-3 activity, cytosolic cytochrome c content, and apoptotic index. These hearts also displayed significantly increased LVEDP and a disappearance of LVDP. Glutamate (5 and 20 mmol/L) significantly alleviated Ca(2+) paradox-induced injury. In contrast, 20 mmol/L mannitol had no effect on Ca(2+) paradox. Ca(2+) paradox significantly increased the extent of the translocation of μ-calpain to the sarcolemmal membrane and the proteolysis of α-fodrin, which suggests calpain activation. Glutamate also blocked these effects. A non-selective inhibitor of glutamate transporters, dl-TBOA (10 μmol/L), had no effect on control hearts, but it reversed glutamate-induced cardioprotection and reduction in calpain activity. Glutamate treatment significantly increased intracellular glutamate content in the Ca(2+) paradoxical heart, which was also blocked by dl-TBOA. We conclude that glutamate protects the heart against Ca(2+) overload-induced injury via glutamate transporters, and the inhibition of calpain activity is involved in this process.
Collapse
Affiliation(s)
- Jian-Ying Zhang
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Ling-Heng Kong
- Department of Physiology, The Fourth Military Medical University, Xi'an, China.,Institute of Basic Medical Science, Xi'an Medical College, Xi'an, China
| | - Dong Lai
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Zhen-Xiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Ming Gu
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Jing-Jun Zhou
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Kong LH, Gu XM, Wu F, Jin ZX, Zhou JJ. CaMKII inhibition mitigates ischemia/reperfusion-elicited calpain activation and the damage to membrane skeleton proteins in isolated rat hearts. Biochem Biophys Res Commun 2017; 491:687-692. [PMID: 28754591 DOI: 10.1016/j.bbrc.2017.07.128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 01/03/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been implicated in myocardial ischemia/reperfusion (IR) injury. The aim of this study was to determine the effect of CaMKII on the damage to membrane skeleton proteins, which is an important cause of IR injury. Isolated rat hearts were subjected to 45-min global ischemia/2-h reperfusion. Both KN-62 and KN-93 were used to inhibit CaMKII. Compared with controls, the hearts in the IR group exhibited remarkable myocardial injury area, LDH release, cell apoptosis and contractile dysfunction, along with an increase in the phosphorylation of CaMKII and its substrate phospholamban. Treatment with either KN-62 or KN-93 mitigated both the heart injury and the phosphorylation of CaMKII and phospholamban. The analysis of cell skeleton proteins revealed that IR injury resulted in an increase in the 150-kDa fragments resulting from the degradation of α-fodrin and dystrophin translocating from the sarcolemmal membrane to the cytosol and a decrease in the 220-kDa isoform of ankyrin-B. As expected, Evans blue dye staining showed an increase in membrane permeability or membrane rupture in the IR group. All of these alterations were alleviated by treatment with either KN-62 or KN-93. In addition, both KN-62 and KN-93 blocked the activity and membrane recruitment of calpain, a key protease responsible for destroying cell skeleton proteins during IR injury. In conclusion, our data provide evidence that damage to membrane skeleton proteins via calpain is a destructive downstream event of CaMKII activation in the setting of myocardial IR injury.
Collapse
Affiliation(s)
- Ling-Heng Kong
- Department of Physiology, Fourth Military Medical University, Xi'an, China; Institute of Basic Medical Science, Xi'an Medical College, Xi'an, China
| | - Xiao-Ming Gu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Feng Wu
- Department of Cardiology, Xi'an, China
| | - Zhen-Xiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jun Zhou
- Department of Physiology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|