1
|
Ahmed CM, Johnson HM, Lewin AS. Corneal application of SOCS1/3 peptides for the treatment of eye diseases mediated by inflammation and oxidative stress. Front Immunol 2024; 15:1416181. [PMID: 39104531 PMCID: PMC11298391 DOI: 10.3389/fimmu.2024.1416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Several blinding diseases affecting the retina and optic nerve are exacerbated by or caused by dysregulated inflammation and oxidative stress. These diseases include uveitis, age related macular degeneration, diabetic retinopathy and glaucoma. Consequently, despite their divergent symptoms, treatments that reduce oxidative stress and suppress inflammation may be therapeutic. The production of inflammatory cytokines and their activities are regulated by a class of proteins termed Suppressors of Cytokine Signaling (SOCS). SOCS1 and SOCS3 are known to dampen signaling via pathways employing Janus kinases and signal transducer and activator of transcription proteins (JAK/STAT), Toll-like Receptors (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen activated kinase (MAPK) and NLR family pyrin domain containing 3 (NLRP3). We have developed cell-penetrating peptides from the kinase inhibitory region of the SOCS1 and SOCS3 (denoted as R9-SOCS1-KIR and R9-SOCS3-KIR) and tested them in retinal pigment epithelium (RPE) cells and in macrophage cell lines. SOCS-KIR peptides exhibited anti-inflammatory, anti-oxidant and anti-angiogenic properties. In cell culture, both Th1 and Th17 cells were suppressed together with the inhibition of other inflammatory markers. We also observed a decrease in oxidants and a simultaneous rise in neuroprotective and anti-oxidant effectors. In addition, treatment prevented the loss of gap junction proteins and the ensuing drop in transepithelial electrical resistance in RPE cells. When tested in mouse models by eye drop instillation, they showed protection against autoimmune uveitis, as a prophylactic as well as a therapeutic. Mice with endotoxin-induced uveitis were protected by eye drop administration as well. R9-SOCS3-KIR was particularly effective against the pathways acting through STAT3, e.g. IL-6 and VEGF-A mediated responses that lead to macular degeneration. Eye drop administration of R9-SOCS3-KIR stimulated production of antioxidant effectors and reduced clinical symptoms in mouse model of oxidative stress that replicates the RPE injury occurring in AMD. Because these peptides suppress multiple pathogenic stimuli and because they can be delivered topically to the cornea, they are attractive candidates for therapeutics for uveitis, macular degeneration, diabetic retinopathy and glaucoma.
Collapse
Affiliation(s)
- Chulbul M. Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Howard M. Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Dias PB, Messias-Reason I, Hokazono K, Nisihara R. The role of mannose-binding lectin (MBL) in diabetic retinopathy: A scoping review. Immunol Lett 2024; 267:106863. [PMID: 38705482 DOI: 10.1016/j.imlet.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Diabetes mellitus (DM) is a chronic systemic disease characterized by a multifactorial nature, which may lead to several macro and microvascular complications. Diabetic retinopathy (DR) is one of the most severe microvascular complications of DM, which can result in permanent blindness. The mechanisms involved in the pathogenesis of DR are multiple and still poorly understood. Factors such as dysregulation of vascular regeneration, oxidative and hyperosmolar stress in addition to inflammatory processes have been associated with the pathogenesis of DR. Furthermore, compelling evidence shows that components of the immune system, including the complement system, play a relevant role in the development of the disease. Studies suggest that high concentrations of mannose-binding lectin (MBL), an essential component of the complement lectin pathway, may contribute to the development of DR in patients with DM. This review provides an update on the possible role of the complement system, specifically the lectin pathway, in the pathogenesis of DR and discusses the potential of MBL as a non-invasive biomarker for both, the presence and severity of DR, in addition to its potential as a therapeutic target for intervention strategies.
Collapse
Affiliation(s)
- Paula Basso Dias
- Clinical Hospital, Federal University of Paraná, Curitiba, Brazil; Department of Ophthalmology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | | | - Kenzo Hokazono
- Department of Ophthalmology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Renato Nisihara
- Clinical Hospital, Federal University of Paraná, Curitiba, Brazil; Department of Medicine, Positivo University, Curitiba, Brazil.
| |
Collapse
|
3
|
Lim RR, Shirali S, Rowlan J, Engel AL, Nazario, M, Gonzalez K, Tong A, Neitz J, Neitz M, Chao JR. CFH Haploinsufficiency and Complement Alterations in Early-Onset Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:43. [PMID: 38683564 PMCID: PMC11059804 DOI: 10.1167/iovs.65.4.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Complement dysregulation is a key component in the pathogenesis of age-related macular degeneration (AMD) and related diseases such as early-onset macular drusen (EOMD). Although genetic variants of complement factor H (CFH) are associated with AMD risk, the impact of CFH and factor H-like protein 1 (FHL-1) expression on local complement activity in human retinal pigment epithelium (RPE) remains unclear. Methods We identified a novel CFH variant in a family with EOMD and generated patient induced pluripotent stem cell (iPSC)-derived RPE cells. We assessed CFH and FHL-1 co-factor activity through C3b breakdown assays and measured complement activation by immunostaining for membrane attack complex (MAC) formation. Expression of CFH, FHL-1, local alternative pathway (AP) components, and regulators of complement activation (RCA) in EOMD RPE cells was determined by quantitative PCR, western blot, and immunostaining. Isogenic EOMD (cEOMD) RPE was generated using CRISPR/Cas9 gene editing. Results The CFH variant (c.351-2A>G) resulted in loss of CFH and FHL-1 expression and significantly reduced CFH and FHL-1 protein expression (∼50%) in EOMD iPSC RPE cells. These cells exhibited increased MAC deposition upon exposure to normal human serum. Under inflammatory or oxidative stress conditions, CFH and FHL-1 expression in EOMD RPE cells paralleled that of controls, whereas RCA expression, including MAC formation inhibitors, was elevated. CRISPR/Cas9 correction restored CFH/FHL-1 expression and mitigated alternative pathway complement activity in cEOMD RPE cells. Conclusions Identification of a novel CFH variant in patients with EOMD resulting in reduced CFH and FHL-1 and increased local complement activity in EOMD iPSC RPE supports the involvement of CFH haploinsufficiency in EOMD pathogenesis.
Collapse
Affiliation(s)
- Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Sharlene Shirali
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jessica Rowlan
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Abbi L. Engel
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Institute, Seattle, Washington, United States
| | - Marcos Nazario,
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Kelie Gonzalez
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Aspen Tong
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
4
|
Ahmed CM, Patel AP, Johnson HM, Ildefonso CJ, Lewin AS. Suppressor of cytokine signaling 3-derived peptide as a therapeutic for inflammatory and oxidative stress-induced damage to the retina. Mol Vis 2023; 29:338-356. [PMID: 38264613 PMCID: PMC10805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose Inflammation and oxidative stress contribute to age-related macular degeneration (AMD) and other retinal diseases. We tested a cell-penetrating peptide from the kinase inhibitory region of an intracellular checkpoint inhibitor suppressor of cytokine signaling 3 (R9-SOCS3-KIR) peptide for its ability to blunt the inflammatory or oxidative pathways leading to AMD. Methods We used anaphylatoxin C5a to mimic the effect of activated complement, lipopolysaccharide (LPS), and tumor necrosis factor alpha (TNFα) to stimulate inflammation and paraquat to induce mitochondrial oxidative stress. We used a human retinal pigment epithelium (RPE) cell line (ARPE-19) as proliferating cells and a mouse macrophage cell line (J774A.1) to follow cell propagation using microscopy or cell titer assays. We evaluated inflammatory pathways by monitoring the nuclear translocation of NF-κB p65 and mitogen-activated protein kinase p38. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the induction of inflammatory markers. In differentiated ARPE-19 monolayers, we evaluated the integrity of tight junction proteins through microscopy and the measurement of transepithelial electrical resistance (TEER). We used intraperitoneal injection of sodium iodate in mice to test the ability of R9-SOC3-KIR to prevent RPE and retinal injury, as assessed by fundoscopy, optical coherence tomography, and histology. Results R9-SOCS3-KIR treatment suppressed C5a-induced nuclear translocation of the NF-kB activation domain p65 in undifferentiated ARPE-19 cells. TNF-mediated damage to tight junction proteins in RPE, and the loss of TEER was prevented in the presence of R9-SOCS3-KIR. Treatment with the R9-SOCS3-KIR peptide blocked the C5a-induced expression of inflammatory genes. The R9-SOCS3-KIR treatment also blocked the LPS-induced expression of interleukin-6, MCP1, cyclooxygenase 2, and interleukin-1 beta. R9-SOCS3-KIR prevented paraquat-mediated cell death and enhanced the levels of antioxidant effectors. Daily eye drop treatment with R9-SOCS3-KIR protected against retinal injury caused by i.p. administration of sodium iodate. Conclusions R9-SOCS3-KIR blocks the induction of inflammatory signaling in cell culture and reduces retinal damage in a widely used RPE/retinal oxidative injury model. As this peptide can be administered through corneal instillation, this treatment may offer a convenient way to slow down the progression of ocular diseases arising from inflammation and chronic oxidative stress.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida Gainesville, FL
| | - Anil P Patel
- Department of Molecular Genetics and Microbiology, University of Florida Gainesville, FL
| | - Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida Gainesville, FL
| | | | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida Gainesville, FL
| |
Collapse
|
5
|
Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol 2018; 11:1856-1864. [PMID: 30450319 DOI: 10.18240/ijo.2018.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Pathological neovascularisation, which is a critical component of diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP), is a frequent cause of compromised vision or blindness. Researchers continuously investigate the role of the complement system in the pathogenesis of retinopathy. Studies have confirmed the role of factors H and I in the development of AMD, and factors H and B in the development of DR. Other components, such as C2, C3, and C5, have also been considered. However, findings on the involvement of the complement system in the pathogenesis of ROP are still inconclusive. This paper presents a review of the current literature data, pointing to the novel results and achievements from research into the role of complement components in the development of retinopathy. There is still a need to continue research in new directions, and to gather more detailed information about this problem which will be useful in the treatment of these diseases.
Collapse
Affiliation(s)
- Martyna Chrzanowska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Anna Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Monika Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| |
Collapse
|
6
|
CLINICAL ENDPOINTS FOR THE STUDY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina 2017; 36:1806-22. [PMID: 27652913 DOI: 10.1097/iae.0000000000001283] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To summarize the recent literature describing the application of modern technologies in the study of patients with geographic atrophy (GA) secondary to age-related macular degeneration. METHODS Review of the literature describing the terms and definitions used to describe GA, imaging modalities used to capture and measure GA, and the tests of visual function and functional deficits that occur in patients with GA. RESULTS In this paper, we describe the evolution of the definitions used to describe GA. We compare imaging modalities used in the characterization of GA, report on the sensitivity and specificity of the techniques where data exist, and describe the correlations between these various modes of capturing the presence of GA. We review the functional tests that have been used in patients with GA, and critically examine their ability to detect and quantify visual deficits. CONCLUSION Ophthalmologists and retina specialists now have a wide range of assessments available for the functional and anatomic characterization of GA in patients with age-related macular degeneration. To date, studies have been limited by their unimodal approach, and we recommend that future studies of GA use multimodal imaging. We also suggest strategies for the optimal functional testing of patients with GA.
Collapse
|
7
|
Sundermeier TR, Sakami S, Sahu B, Howell SJ, Gao S, Dong Z, Golczak M, Maeda A, Palczewski K. MicroRNA-processing Enzymes Are Essential for Survival and Function of Mature Retinal Pigmented Epithelial Cells in Mice. J Biol Chem 2017; 292:3366-3378. [PMID: 28104803 DOI: 10.1074/jbc.m116.770024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Indexed: 11/06/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible vision loss. The neovascular or "wet" form of AMD can be treated to varying degrees with anti-angiogenic drugs, but geographic atrophy (GA) is an advanced stage of the more prevalent "dry" form of AMD for which there is no effective treatment. Development of GA has been linked to loss of the microRNA (miRNA)-processing enzyme DICER1 in the mature retinal pigmented epithelium (RPE). This loss results in the accumulation of toxic transcripts of Alu transposable elements, which activate the NLRP3 inflammasome and additional downstream pathways that compromise the integrity and function of the RPE. However, it remains unclear whether the loss of miRNA processing and subsequent gene regulation in the RPE due to DICER1 deficiency also contributes to RPE cell death. To clarify the role of miRNAs in RPE cells, we used two different mature RPE cell-specific Cre recombinase drivers to inactivate either Dicer1 or DiGeorge syndrome critical region 8 (Dgcr8), thus removing RPE miRNA regulatory activity in mice by disrupting two independent and essential steps of miRNA biogenesis. In contrast with prior studies, we found that the loss of each factor independently led to strikingly similar defects in the survival and function of the RPE and retina. These results suggest that the loss of miRNAs also contributes to RPE cell death and loss of visual function and could affect the pathology of dry AMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcin Golczak
- Departments of Pharmacology; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Akiko Maeda
- Ophthalmology and Visual Sciences, School of Medicine
| | - Krzysztof Palczewski
- Departments of Pharmacology; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|