1
|
Ferrer-Sistach E, Teis A, Escabia C, Delgado V. Assessment of the Severity of Aortic Regurgitation by Noninvasive Imaging : Non-invasive MMI for AR. Curr Cardiol Rep 2024; 26:1-14. [PMID: 38091195 DOI: 10.1007/s11886-023-02011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE OF THE REVIEW The role of multimodality imaging in the evaluation of patients with aortic regurgitation is summarized in this review. RECENT FINDINGS The etiology (mechanism) of the aortic regurgitation and the severity of aortic regurgitation and hemodynamic consequences are key in the decision making of patients with severe aortic regurgitation. While echocardiography remains as the leading technique to assess all these parameters, other imaging techniques have become essential for the accurate assessment of aortic regurgitation severity and the timing of aortic intervention. The anatomic suitability of transcatheter aortic valve implantation in inoperable patients with severe aortic regurgitation is usually assessed with computed tomography. Aortic regurgitation is a prevalent disease with various pathophysiological mechanisms that need a personalized treatment. The evaluation of the mechanism and severity of aortic regurgitation can be initially performed with echocardiography. Three-dimensional techniques, including echocardiography, have become very relevant for accurate assessment of the regurgitation severity and its hemodynamic consequences. Assessment of myocardial tissue characteristics with cardiac magnetic resonance is key in the risk stratification of patients and in the timing of aortic intervention. Computed tomography is important in the assessment of aortic dimensions and selection of patients for transcatheter aortic valve implantation.
Collapse
Affiliation(s)
- Elena Ferrer-Sistach
- Heart Institute, University Hospital Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Albert Teis
- Heart Institute, University Hospital Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Claudia Escabia
- Heart Institute, University Hospital Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Victoria Delgado
- Heart Institute, University Hospital Germans Trias I Pujol, Carretera de Canyet S/N, 08916, Badalona, Spain.
- Center for Comparative Medicine and Bioimaging (CMCIB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain.
| |
Collapse
|
2
|
Sinn M, Petersen J, Lenz A, von Stumm M, Sequeira Groß TM, Huber L, Reichenspurner H, Adam G, Lund G, Bannas P, Girdauskas E. Cardiac T1 mapping enables risk prediction of LV dysfunction after surgery for aortic regurgitation. Front Cardiovasc Med 2023; 10:1155787. [PMID: 37424901 PMCID: PMC10328445 DOI: 10.3389/fcvm.2023.1155787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Background To assess whether cardiac T1 mapping for detecting myocardial fibrosis enables preoperative identification of patients at risk for early left ventricular dysfunction after surgery of aortic regurgitation. Methods 1.5 Tesla cardiac magnetic resonance imaging was performed in 40 consecutive aortic regurgitation patients before aortic valve surgery. Native and post-contrast T1 mapping was performed using a modified Look-Locker inversion-recovery sequence. Serial echocardiography was performed at baseline and 8 ± 5 days after aortic valve surgery to quantify LV dysfunction. Receiver operating characteristic analysis was performed to determine the diagnostic accuracy of native T1 mapping and extracellular volume for predicting postoperative LV ejection fraction decrease >-10% after aortic valve surgery. Results Native T1 was significantly increased in patients with a postoperatively decreased LVEF (n = 15) vs. patients with a preserved postoperative LV ejection fraction (n = 25) (i.e., 1,071 ± 67 ms vs. 1,019 ± 33 ms, p = .001). Extracellular volume was not significantly different between patients with preserved vs. decreased postoperative LV ejection fraction. With a cutoff-of value of 1,053 ms, native T1 yielded an area under the curve (AUC) of .820 (95% CI: .683-.958) for differentiating between patients with preserved vs. reduced LV ejection fraction with 70% sensitivity and 84% specificity. Conclusion Increased preoperative native T1 is associated with a significantly higher risk of systolic LV dysfunction early after aortic valve surgery in aortic regurgitation patients. Native T1 could be a promising tool to optimize the timing of aortic valve surgery in patients with aortic regurgitation to prevent early postoperative LV dysfunction.
Collapse
Affiliation(s)
- Martin Sinn
- Department of Diagnostic and Interventional Radiology, University Hospital Eppendorf, Hamburg, Germany
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Hospital Eppendorf, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology, University Hospital Eppendorf, Hamburg, Germany
| | - Maria von Stumm
- Department of Cardiovascular Surgery, University Hospital Eppendorf, Hamburg, Germany
| | | | - Lukas Huber
- Department of Diagnostic and Interventional Radiology, University Hospital Eppendorf, Hamburg, Germany
| | | | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology, University Hospital Eppendorf, Hamburg, Germany
| | - Gunnar Lund
- Department of Diagnostic and Interventional Radiology, University Hospital Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology, University Hospital Eppendorf, Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Hospital Eppendorf, Hamburg, Germany
- Department of Cardiothoracic Surgery, Augsburg University Hospital, Augsburg, Germany
| |
Collapse
|
3
|
Suwa K, Rahsepar AA, Geiger J, Dolan R, Ghasemiesfe A, Barker AJ, Collins JD, Markl M, Carr JC. A Left ventricle remodeling in patients with bicuspid aortic valve. Int J Cardiovasc Imaging 2023; 39:391-399. [PMID: 36315365 DOI: 10.1007/s10554-022-02727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE We assessed the impact of bicuspid aortic valve (BAV), aortic stenosis (AS), and regurgitation (AR) on the metrics of left ventricular (LV) remodeling, as measured by electrocardiogram (ECG), transthoracic echocardiography (TTE), and cardiac magnetic resonance (CMR). METHODS This retrospective CMR study included 11 patients with both AS and AR (BAV-ASR), 30 with AS (BAV-AS), 28 with AR (BAV-AR), 47 with neither AS nor AR (BAV-no_AS/AR), and 40 with trileaflet aortic valve (TAV-no_AS/AR). CMR analysis included the LV end-diastolic volume index (LVEDVi), mass index (LVMi), and extracellular volume fraction (ECV). The Sokolow-Lyon and Cornell products by ECG and TTE-derived E/e' were measured. RESULTS There were no differences in the ECG, TTE, and CMR parameters between BAV-no_AS/AR and TAV-no_AS/AR. However, the presence of aortic valve dysfunction resulted in an elevated Sokolow-Lyon product for BAV-ASR (p = 0.017) and BAV-AR (p = 0.001), as well as increased Cornell product (p = 0.04) and E/e' (p < 0.001) for BAV-AS compared with BAV-no_AS/AR. LVEDVi and LVMi were elevated in patients with BAV-ASR and BAV-AR compared with those with BAV-no_AS/AR (LVEDVi: 101 ± 29 ml/m2 and 112 ± 32 ml/m2 vs. 74 ± 15 ml/m2, p = 0.005 and p < 0.001, LVMi: 75 ± 7 g/m2 and 64 ± 14 g/m2 vs. 47 ± 9 g/m2, respectively; p < 0.001). There was no difference in ECV between the BAV and TAV-no_AS/AR subgroups. CONCLUSION Normally functioning BAV did not result in LV remodeling. However, concomitant AV dysfunction was associated with statistically significant morphological remodeling.
Collapse
Affiliation(s)
- Kenichiro Suwa
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA.
- Division of Cardiology, Internal Medicine 3, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Amir Ali Rahsepar
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
| | - Julia Geiger
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Diagnostic Imaging, University Children`s Hospital Zürich, Zürich, Switzerland
- University of Zürich, Zürich, Switzerland
| | - Ryan Dolan
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
| | - Ahmadreza Ghasemiesfe
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Alex J Barker
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeremy D Collins
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL, USA
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, 737 N. Michigan Ave. Suite 1600, 60611, Chicago, IL, USA
| |
Collapse
|
4
|
Yue T, Xiong S, Zheng D, Wang Y, Long P, Yang J, Danzeng D, Gao H, Wen X, Li X, Hou J. Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Front Bioeng Biotechnol 2022; 10:988683. [PMID: 36185428 PMCID: PMC9520723 DOI: 10.3389/fbioe.2022.988683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Myocardial fibrosis is the result of abnormal healing after acute and chronic myocardial damage and is a direct cause of heart failure and cardiac insufficiency. The clinical approach is to preserve cardiac function and inhibit fibrosis through surgery aimed at dredging blood vessels. However, this strategy does not adequately address the deterioration of fibrosis and cardiac function recovery. Therefore, numerous biomaterial platforms have been developed to address the above issues. In this review, we summarize the existing biomaterial delivery and restoring platforms, In addition, we also clarify the therapeutic strategies based on biomaterial platforms, including general strategies to block the fibrosis process and new strategies to promote cellular restoring effects. The development of structures with the ability to block further fibrosis progression as well as to promote cardiomyocytes viability should be the main research interests in myocardial fibrosis, and the reestablishment of structures necessary for normal cardiac function is central to the treatment of myocardial fibrosis. Finally, the future application of biomaterials for myocardial fibrosis is also highlighted.
Collapse
Affiliation(s)
- Tian Yue
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqiang Xiong
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Dezhi Zheng
- Department of Cardiovascular Surgery, The 960th Hospital of the PLA Joint Logistic Support Force, Jinan, China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Dunzhu Danzeng
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Han Gao
- Department of Basic Medicine, Medical College, Tibet University, Lhasa, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People’s Hospital, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Xin Li
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| | - Jun Hou
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Xudong Wen, ; Xin Li, ; Jun Hou,
| |
Collapse
|
5
|
Abstract
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.
Collapse
|
6
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Abstract
Treatment of degenerative aortic stenosis has been transformed by transcatheter aortic valve implantation (TAVI) over the past 10-15 years. The success of various technologies has led operators to attempt to broaden the indications, and many patients with native valve aortic regurgitation have been treated 'off label' with similar techniques. However, the alterations in the structure of the valve complex in pure native aortic regurgitation are distinct to those in degenerative aortic stenosis, and there are unique challenges to be overcome by percutaneous valves. Nevertheless some promise has been shown with both non-dedicated and dedicated devices. In this article, the authors explore some of these challenges and review the current evidence base for TAVI for aortic regurgitation.
Collapse
Affiliation(s)
- Eduardo A Arias
- Interventional Cardiology Department, National Institute of Cardiology Ignacio Chávez Mexico City, Mexico
| | - Amit Bhan
- Barts Heart Centre, St Bartholomew's Hospital London, UK
| | - Zhan Y Lim
- Cardiology Department, Khoo Teck Puat Hospital Singapore
| | - Michael Mullen
- Barts Heart Centre, St Bartholomew's Hospital London, UK
| |
Collapse
|
8
|
Mannacio V, Mannacio L, Antignano A, De Amicis V, Musumeci F, Iannelli G. Aortic stenosis and aortic regurgitation express different titin isoforms: Differences and relationships with functional and geometric characteristics. Int J Cardiol 2018; 259:138-144. [PMID: 29472025 DOI: 10.1016/j.ijcard.2018.01.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/17/2017] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Background-Titin represents an important biomechanical sensor which determines compliance and diastolic/systolic function of the left ventricle (LV). To assess the different titin-isoform expression and the relationships with functional and geometric patterns, we analyzed titin-isoform expression and cardiomyocytes contractile function in myocardial biopsy samples of patients undergoing aortic valve replacement (AVR) for aortic stenosis (AS) and for aortic regurgitation (AR). Method -Specimens, collected from the LV of 35 with AS and 35 with AR undergoing AVR were analyzed for titin-isoform expression and cardiomyocytes force measurement. Ten donor hearts were analyzed as controls for normal values. Results were implemented with preoperative geometry and function assessed by Doppler echocardiography. Results-Compared to controls, N2BA/N2B titin-isoforms ratio was reduced to 0.24 in AS (p < 0.001) but increased to 0.51 in AR (p < 0.001). N2BA/N2B titin-isoforms ratio was further reduced in 8 patients with severe (restrictive) diastolic dysfunction (0.17 ± 0.03, p < 0.001) but was increased in patients with severe systolic dysfunction (0.58 ± 0.07, p < 0.001). As compared to controls, Fpasive was higher in AS (6.7 ± 0.2 vs 4.4 ± 0.4 kN/m2, p < 0.001) but was lower in AR (3.7 ± 0.2 vs 4.4 ± 0.4 kN/m2, p < 0.001). Total force was comparable. Fpassive was significantly higher in AS patients with severe than with moderate LV diastolic dysfunction (7.1 ± 0.5 vs 6.6. ± 0.6, p = 0.004). Conclusions-titin-isoform expression differs in AS and AR as adaptive response to different pathophysiologic scenarios. Co-expressing isoforms at varying ratios results in modulation of the passive mechanical behavior of the LV at different degree of dysfunction and allows for compensative adjustment of the diastolic/systolic properties of the myocardium.
Collapse
Affiliation(s)
- Vito Mannacio
- Department of Cardiac Surgery, University Federico II, School of Medicine, Naples, Italy.
| | - Luigi Mannacio
- Department of Cardiac Surgery, University Federico II, School of Medicine, Naples, Italy
| | - Anita Antignano
- Department of Cardiology, Azienda Ospedaliera Santobono-Pausillipon, Naples, Italy
| | - Vincenzo De Amicis
- Department of Cardiac Surgery, University Federico II, School of Medicine, Naples, Italy
| | - Francesco Musumeci
- Department of Cardiac Surgery, Azienda Ospedaliera S. Camillo Forlanini, Rome, Italy
| | - Gabriele Iannelli
- Department of Cardiac Surgery, University Federico II, School of Medicine, Naples, Italy
| |
Collapse
|
9
|
Podlesnikar T, Delgado V, Bax JJ. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease. Int J Cardiovasc Imaging 2017. [PMID: 28642994 PMCID: PMC5797565 DOI: 10.1007/s10554-017-1195-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The left ventricular (LV) remodeling process associated with significant valvular heart disease (VHD) is characterized by an increase of myocardial interstitial space with deposition of collagen and loss of myofibers. These changes occur before LV systolic function deteriorates or the patient develops symptoms. Cardiovascular magnetic resonance (CMR) permits assessment of reactive fibrosis, with the use of T1 mapping techniques, and replacement fibrosis, with the use of late gadolinium contrast enhancement. In addition, functional consequences of these structural changes can be evaluated with myocardial tagging and feature tracking CMR, which assess the active deformation (strain) of the LV myocardium. Several studies have demonstrated that CMR techniques may be more sensitive than the conventional measures (LV ejection fraction or LV dimensions) to detect these structural and functional changes in patients with severe left-sided VHD and have shown that myocardial fibrosis may not be reversible after valve surgery. More important, the presence of myocardial fibrosis has been associated with lesser improvement in clinical symptoms and recovery of LV systolic function. Whether assessment of myocardial fibrosis may better select the patients with severe left-sided VHD who may benefit from surgery in terms of LV function and clinical symptoms improvement needs to be demonstrated in prospective studies. The present review article summarizes the current status of CMR techniques to assess myocardial fibrosis and appraises the current evidence on the use of these techniques for risk stratification of patients with severe aortic stenosis or regurgitation and mitral regurgitation.
Collapse
Affiliation(s)
- Tomaz Podlesnikar
- Department of Cardiology, Heart and Lung Center, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands
| | - Victoria Delgado
- Department of Cardiology, Heart and Lung Center, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Heart and Lung Center, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|