1
|
Lu X, Luo Y, Huang Y, Zhu Z, Yin H, Xu S. Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments. Int J Mol Sci 2025; 26:773. [PMID: 39859485 PMCID: PMC11765518 DOI: 10.3390/ijms26020773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune microenvironment remain unclear. Three machine learning methods, namely k nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), are utilized to identify eight key HCC cell senescence markers (HCC-CSMs). Consensus clustering revealed molecular subtypes. The single-cell analysis explored the tumor microenvironment, immune checkpoints, and immunotherapy responses. In vitro, RNA interference mediated BIRC5 knockdown, and co-culture experiments assessed its impact. Cellular senescence-related genes predicted HCC survival information better than differential expression genes (DEGs). Eight key HCC-CSMs were identified, which revealed two distinct clusters with different clinical characteristics and mutation patterns. By single-cell RNA-seq data, we investigated the immunological microenvironment and observed that increasing immune cells allow hepatocytes to regain population dominance. This phenomenon may be associated with the HCC-CSMs identified in our study. By combining bulk RNA sequencing and single-cell RNA sequencing data, we identified the key gene BIRC5 and the natural killer (NK) cells that express BIRC5 at the highest levels. BIRC5 knockdown increased NK cell proliferation but reduced function, potentially aiding tumor survival. These findings provide insights into senescence-driven HCC progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Xinhe Lu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yuhang Luo
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yun Huang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Zhu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongyan Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Breder-Bonk C, Docter D, Barz M, Strieth S, Knauer SK, Gül D, Stauber RH. The Apoptosis Inhibitor Protein Survivin Is a Critical Cytoprotective Resistor against Silica-Based Nanotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2546. [PMID: 37764575 PMCID: PMC10535920 DOI: 10.3390/nano13182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Exposure to nanoparticles is inevitable as they become widely used in industry, cosmetics, and foods. However, knowledge of their (patho)physiological effects on biological entry routes of the human body and their underlying molecular mechanisms is still fragmented. Here, we examined the molecular effects of amorphous silica nanoparticles (aSiNPs) on cell lines mimicking the alveolar-capillary barrier of the lung. After state-of-the-art characterization of the used aSiNPs and the cell model, we performed cell viability-based assays and a protein analysis to determine the aSiNP-induced cell toxicity and underlying signaling mechanisms. We revealed that aSiNPs induce apoptosis in a dose-, time-, and size-dependent manner. aSiNP-induced toxicity involves the inhibition of pro-survival pathways, such as PI3K/AKT and ERK signaling, correlating with reduced expression of the anti-apoptotic protein Survivin on the protein and transcriptional levels. Furthermore, induced Survivin overexpression mediated resistance against aSiNP-toxicity. Thus, we present the first experimental evidence suggesting Survivin as a critical cytoprotective resistor against silica-based nanotoxicity, which may also play a role in responses to other NPs. Although Survivin's relevance as a biomarker for nanotoxicity needs to be demonstrated in vivo, our data give general impetus to investigate the pharmacological modulation of Survivin`s functions to attenuate the harmful effects of acute or chronic inhalative NP exposure.
Collapse
Affiliation(s)
- Christina Breder-Bonk
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Dominic Docter
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Shirley K. Knauer
- Center for Medical Biotechnology (ZMB), Department of Molecular Biology II, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany;
| | - Désirée Gül
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Roland H. Stauber
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| |
Collapse
|
3
|
Hu L, Li H, Zi M, Li W, Liu J, Yang Y, Zhou D, Kong QP, Zhang Y, He Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front Cell Dev Biol 2022; 10:822816. [PMID: 35252191 PMCID: PMC8890612 DOI: 10.3389/fcell.2022.822816] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a process that leads to a state of irreversible cell growth arrest induced by a variety of intrinsic and extrinsic stresses. Senescent cells (SnCs) accumulate with age and have been implicated in various age-related diseases in part via expressing the senescence-associated secretory phenotype. Elimination of SnCs has the potential to delay aging, treat age-related diseases and extend healthspan. However, once cells becoming senescent, they are more resistant to apoptotic stimuli. Senolytics can selectively eliminate SnCs by targeting the SnC anti-apoptotic pathways (SCAPs). They have been developed as a novel pharmacological strategy to treat various age-related diseases. However, the heterogeneity of the SnCs indicates that SnCs depend on different proteins or pathways for their survival. Thus, a better understanding of the underlying mechanisms for apoptotic resistance of SnCs will provide new molecular targets for the development of cell-specific or broad-spectrum therapeutics to clear SnCs. In this review, we discussed the latest research progresses and challenge in senolytic development, described the significance of regulation of senescence and apoptosis in aging, and systematically summarized the SCAPs involved in the apoptotic resistance in SnCs.
Collapse
Affiliation(s)
- Li Hu
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Jing Liu
- Lab of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yunxia Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Localization matters: nuclear-trapped Survivin sensitizes glioblastoma cells to temozolomide by elevating cellular senescence and impairing homologous recombination. Cell Mol Life Sci 2021; 78:5587-5604. [PMID: 34100981 PMCID: PMC8257519 DOI: 10.1007/s00018-021-03864-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.
Collapse
|
5
|
Guzmán EA, Pitts TP, Tandberg KR, Winder PL, Wright AE. Discovery of Survivin Inhibitors Part 1: Screening the Harbor Branch Pure Compound Library. Mar Drugs 2021; 19:md19020073. [PMID: 33573152 PMCID: PMC7911841 DOI: 10.3390/md19020073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Survivin is a 16.5 KDa protein whose functions include promoting cellular mitosis, angiogenesis, and senescence as well as inhibiting apoptosis. Higher survivin expression is found in cancer tissues than normal tissues, and this expression correlates with disease progression and aggressiveness. Survivin has been validated as a clinical target for cancer. Small molecules are important antagonists of survivin levels in cancer cells. A structurally diverse library of genetically encoded small molecules (natural products) derived from marine plants, invertebrates, and microbes was screened for their ability to reduce expression levels of survivin in the DLD-1 colon adenocarcinoma and the A549 nonsmall cell lung carcinoma cell lines. This led to the identification of this novel activity for the known compounds eryloside E, ilicicolin H, tanzawaic acid A, and p-hydroxyphenopyrrozin. Both eryloside E and ilicicolin H showed the ability to reduce survivin expression in the low micromolar range against both cell lines.
Collapse
|
6
|
Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:244-263. [PMID: 34337349 PMCID: PMC8323830 DOI: 10.20517/cdr.2020.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
More than half of cancer patients are treated with radiotherapy, which kills tumor cells by directly and indirectly inducing DNA damage, including cytotoxic DNA double-strand breaks (DSBs). Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response (DDR). The DDR arrests the cell cycle, upregulates DNA repair, and triggers apoptosis when damage is excessive. The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention. This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells, overcome intrinsic and acquired tumor radioresistance, and protect normal tissue. Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics. These include cell type and cell cycle phase distribution; tissue/tumor microenvironment and oxygen levels; DNA damage load and quality; DNA repair capacity; and susceptibility to apoptosis or other active or passive cell death pathways. We provide an overview of radiobiological parameters associated with X-ray, proton, and carbon ion radiotherapy; DNA repair and DNA damage signaling pathways; and other factors that regulate tumor and normal cell responses to radiation. We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
- Correspondence Address: Dr. Jac A. Nickoloff, Department of Environmental and Radiological Health Sciences, Colorado State University, 1681 Campus Delivery, Ft. Collins, CO 80523-1681, USA. E-mail:
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Takamitsu A. Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| |
Collapse
|
7
|
Yu X, Zhang Y, Wu B, Kurie JM, Pertsemlidis A. The miR-195 Axis Regulates Chemoresistance through TUBB and Lung Cancer Progression through BIRC5. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:288-298. [PMID: 31508486 PMCID: PMC6727248 DOI: 10.1016/j.omto.2019.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Chemoresistance and metastasis are the major reasons for non-small cell lung cancer (NSCLC) treatment failure and patient deaths. We and others have shown that miR-195 regulates the sensitivity of NSCLC to microtubule-targeting agents (MTAs) in vitro and in vivo and that miR-195 represses the migration and invasion of NSCLC cells in vitro. However, the relationship between miR-195 and microtubule structure and function and whether miR-195 represses NSCLC metastasis in vivo remain unknown. We assessed the correlation between tumor levels of TUBB and patient survival, the effect of TUBB on drug response, and the effect of miR-195 on migration, invasion, and metastasis in vitro and in vivo. We found that miR-195 directly targets TUBB; knockdown of TUBB sensitizes cells to MTAs, while overexpression confers resistance; high expression of TUBB is correlated with worse survival of lung adenocarcinoma; TUBB is also regulated by CHEK1, which has been shown to regulate chemoresistance; and miR-195 targets BIRC5 to repress migration and invasion in vitro and metastasis in vivo. Our findings highlight the relevance of the miR-195/TUBB axis in regulating the response of NSCLC to MTAs and the importance of the miR-195/BIRC5 axis in regulating NSCLC metastasis.
Collapse
Affiliation(s)
- Xiaojie Yu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Binggen Wu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410000, China
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA.,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
8
|
Ferraro M, Di Vincenzo S, Dino P, Bucchieri S, Cipollina C, Gjomarkaj M, Pace E. Budesonide, Aclidinium and Formoterol in combination limit inflammaging processes in bronchial epithelial cells exposed to cigarette smoke. Exp Gerontol 2019; 118:78-87. [PMID: 30659954 DOI: 10.1016/j.exger.2019.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/21/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
Abstract
Inflammation and cellular senescence (also called inflammaging) are involved in the pathogenesis of premature lung aging, a key driver of chronic obstructive pulmonary disease (COPD). Downregulation of histone deacetylases and FoxO3 expression, activation of the ERK 1/2 pathway and IL-8 increase are hallmarks of lung inflammaging. The effects of Budesonide (BUD), Aclidinium (ACL) and Formoterol (FO) on lung inflammaging are unknown. This study was aimed to assess the effects of BUD, ACL and FO in bronchial epithelial cells exposed to cigarette smoke extract (CSE) by evaluating: a) Expression of TLR4 and survivin and LPS binding by flow cytometry; b) expression of HDAC2, HDAC3, SIRT1 and FoxO3 and activation of the ERK 1/2 pathway by western blot; c) IL-8 mRNA levels and release by Real Time-PCR and ELISA, respectively. Reported results show that CSE increased TLR4 and survivin, LPS binding, ERK 1/2 activation, IL-8 release and mRNA levels but decreased SIRT1, HDAC2, HDAC3 and FoxO3 nuclear expression. Combined therapy with BUD, ACL and FO counteracted the effects of CSE on LPS binding, FoxO3 nuclear expression, ERK 1/2 activation, survivin and IL-8 release and mRNA levels. These findings suggest a new role of combination therapy with BUD, ACL and FO in counteracting inflammaging processes induced by cigarette smoke exposure.
Collapse
Affiliation(s)
- M Ferraro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - S Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - P Dino
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - S Bucchieri
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - C Cipollina
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy; Fondazione Ri.MED, Palermo, Italy
| | - M Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - E Pace
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
9
|
Mazzio EA, Lewis CA, Elhag R, Soliman KF. Effects of Sepantronium Bromide (YM-155) on the Whole Transcriptome of MDA-MB-231 Cells: Highlight on Impaired ATR/ATM Fanconi Anemia DNA Damage Response. Cancer Genomics Proteomics 2018; 15:249-264. [PMID: 29976630 PMCID: PMC6070710 DOI: 10.21873/cgp.20083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
Sepantronium bromide (YM-155) is believed to elicit apoptosis and mitotic arrest in tumor cells by reducing (BIRC5, survivin) mRNA. In this study, we monitored changes in survivin mRNA and protein after treating MDA-MB-231 cells with YM-155 concurrent with evaluation of whole transcriptomic (WT) mRNA and long intergenic non-coding RNA at 2 time points: 8 h sub-lethal (83 ng/mL) and 20 h at the LC50 (14.6 ng/mL). The data show a tight association between cell death and the precipitating loss of survivin protein and mRNA (-2.67 fold-change (FC), p<0.001) at 20 h, questioning if the decline in survivin is attributed to cell death or drug impact. The meager loss of survivin mRNA was overshadowed by enormous differential change to the WT in both magnitude and significance for over 2000 differentially up/down-regulated transcripts: (+22 FC to -12 FC, p<0.001). The data show YM-155 to up-regulate transcripts in control of circadian rhythm (NOCT, PER, BHLHe40, NFIL3), tumor suppression (SIK1, FOSB), histone methylation (KDM6B) and negative feedback of NF-kappa B signaling (TNFAIP3). Down-regulated transcripts by YM-155 include glucuronidase (GUSBP3), numerous micro-RNAs, DNA damage repair elements (CENPI, POLQ, RAD54B) and the most affected system was the ataxia-telangiectasia mutated (ATM)/Fanconi anemia E3 monoubiquitin ligase core complexes (FANC transcripts - A/B/E/F/G/M), FANC2, FANCI, BRCA1, BRCA2, RAD51, PALB2 gene and ATR (ATM- and Rad3-Related) pathway. In conclusion, these findings suggest that a primary target of YM-155 is the loss of replicative DNA repair systems.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Charles A Lewis
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Rashid Elhag
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
10
|
Sumi T, Hirai S, Yamaguchi M, Tanaka Y, Tada M, Niki T, Takahashi H, Sakuma Y. Trametinib downregulates survivin expression in RB1-positive KRAS -mutant lung adenocarcinoma cells. Biochem Biophys Res Commun 2018; 501:253-258. [DOI: 10.1016/j.bbrc.2018.04.230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
|
11
|
Yu X, Zhang Y, Cavazos D, Ma X, Zhao Z, Du L, Pertsemlidis A. miR-195 targets cyclin D3 and survivin to modulate the tumorigenesis of non-small cell lung cancer. Cell Death Dis 2018; 9:193. [PMID: 29416000 PMCID: PMC5833354 DOI: 10.1038/s41419-017-0219-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
miR-195 has recently been reported to function as a tumor suppressor in various cancers, including non-small cell lung cancer (NSCLC). However, the mechanisms by which miR-195 represses the tumorigenesis of NSCLC cells are not fully understood. We performed a high-throughput screen using an miRNA mimic library and confirmed the identification of miR-195 as a tumor suppressor in NSCLC. We demonstrated that overexpression or induced expression of miR-195 in lung tumors slows tumor growth and that repression of miR-195 accelerates tumor growth. In addition, we found that knockout of miR-195 promotes cancer cell growth. We demonstrated that miR-195 targets cyclin D3 to cause cell cycle arrest at the G1 phase and that miR-195 targets survivin to induce apoptosis and senescence in NSCLC cells. Overexpression of cyclin D3 or survivin reverses the effects of miR-195 in NSCLC cells. Through the analysis of data from The Cancer Genome Atlas, we confirmed that the expression of miR-195 is lower in tumors than in adjacent normal tissues and that low expression of miR-195 is associated with poor survival in both lung adenocarcinoma and squamous cell carcinoma patients. Specifically, we found that BIRC5, which codes for survivin, is upregulated in both adenocarcinoma and squamous cell carcinoma tissues and that high expression of BIRC5 is associated with poor survival in adenocarcinoma, but not squamous cell carcinoma. In addition, the ratio of miR-195 level to BIRC5 level is associated with both recurrence-free and overall survival in lung adenocarcinoma. Our results suggest that the miR-195/BIRC5 axis is a potential target for treatment of lung adenocarcinoma specifically, and NSCLC in general.
Collapse
Affiliation(s)
- Xiaojie Yu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David Cavazos
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhenze Zhao
- Department of Chemistry and Biochemistry, Texas State University at San Marcos, San Marcos, TX, USA
| | - Liqin Du
- Department of Chemistry and Biochemistry, Texas State University at San Marcos, San Marcos, TX, USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
12
|
Hai B, Zhao Q, Deveau MA, Liu F. Delivery of Sonic Hedgehog Gene Repressed Irradiation-induced Cellular Senescence in Salivary Glands by Promoting DNA Repair and Reducing Oxidative Stress. Theranostics 2018; 8:1159-1167. [PMID: 29464006 PMCID: PMC5817117 DOI: 10.7150/thno.23373] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/01/2017] [Indexed: 01/15/2023] Open
Abstract
Rationale: Irreversible hypofunction of salivary glands or xerostomia is common in head and neck cancer survivors treated with radiotherapy even when various new techniques are applied to minimize the irradiation (IR) damage. This condition severely impairs the quality of life of patients and can only be temporarily relieved with current treatments. We found recently that transient expression of Sonic Hedgehog (Shh) in salivary glands after IR rescued salivary function, but the underlying mechanisms are not totally clear. Methods: We generated a mouse model of IR-induced hyposalivation, and delivered adenoviral vectors carrying Shh or control GFP gene into submandibular glands (SMGs) via retrograde ductal instillation 3 days after IR. The cellular senescence was evaluated by senescence-associated beta-galactosidase assay and the expression of senescence markers. The underlying mechanisms were explored by examining DNA damage, oxidative stress, and the expression of related genes by qRT-PCR, Western blot and immunofluorescent staining. Results: Shh gene transfer repressed IR-induced cellular senescence by promoting DNA repair and decreasing oxidative stress, which is mediated through upregulating expression of genes related to DNA repair such as survivin and miR-21 and repressing expression of pro-senescence gene Gdf15 likely downstream of miR-21. Conclusion: Repressing cellular senescence contributes to the rescue of IR-induced hyposalivation by transient activation of Hh signaling, which is related to enhanced DNA repair and decreased oxidative stress in SMGs.
Collapse
|
13
|
Gleichenhagen J, Arndt C, Casjens S, Meinig C, Gerullis H, Raiko I, Brüning T, Ecke T, Johnen G. Evaluation of a New Survivin ELISA and UBC ® Rapid for the Detection of Bladder Cancer in Urine. Int J Mol Sci 2018; 19:ijms19010226. [PMID: 29324722 PMCID: PMC5796175 DOI: 10.3390/ijms19010226] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Urine-based biomarkers for non-invasive diagnosis of bladder cancer are urgently needed. No single marker with sufficient sensitivity and specificity has been described so far. Thus, a combination of markers appears to be a promising approach. The aim of this case-control study was to evaluate the performance of an in-house developed enzyme-linked immunosorbent assay (ELISA) for survivin, the UBC®Rapid test, and the combination of both assays. A total of 290 patients were recruited. Due to prior bladder cancer, 46 patients were excluded. Urine samples were available from 111 patients with bladder cancer and 133 clinical controls without urologic diseases. Antibodies generated from recombinant survivin were utilized to develop a sandwich ELISA. The ELISA and the UBC®Rapid test were applied to all urine samples. Receiver operating characteristic (ROC) analysis was used to evaluate marker performance. The survivin ELISA exhibited a sensitivity of 35% with a specificity of 98%. The UBC®Rapid test showed a sensitivity of 56% and a specificity of 96%. Combination of both assays increased the sensitivity to 66% with a specificity of 95%. For high-grade tumors, the combination showed a sensitivity of 82% and a specificity of 95%. The new survivin ELISA and the UBC®Rapid test are both able to detect bladder cancer, especially high-grade tumors. However, the performance of each individual marker is moderate and efforts to improve the survivin assay should be pursued. A combination of both assays confirmed the benefit of using marker panels. The results need further testing in a prospective study and with a high-risk population.
Collapse
Affiliation(s)
- Jan Gleichenhagen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Christian Arndt
- Department of Urology, Lukaskrankenhaus Neuss, 41464 Neuss, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Carmen Meinig
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Holger Gerullis
- University Hospital for Urology, Klinikum Oldenburg, 26133 Oldenburg, Germany.
| | - Irina Raiko
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Thorsten Ecke
- Department of Urology, HELIOS Hospital, 15526 Bad Saarow, Germany.
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| |
Collapse
|
14
|
Gribko A, Hahlbrock A, Strieth S, Becker S, Hagemann J, Deichelbohrer M, Hildebrandt A, Habtemichael N, Wünsch D. Disease-relevant signalling-pathways in head and neck cancer: Taspase1's proteolytic activity fine-tunes TFIIA function. Sci Rep 2017; 7:14937. [PMID: 29097782 PMCID: PMC5668323 DOI: 10.1038/s41598-017-14814-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 12/23/2022] Open
Abstract
Head and neck cancer (HNC) is the seventh most common malignancy in the world and its prevailing form, the head and neck squamous cell carcinoma (HNSCC), is characterized as aggressive and invasive cancer type. The transcription factor II A (TFIIA), initially described as general regulator of RNA polymerase II-dependent transcription, is part of complex transcriptional networks also controlling mammalian head morphogenesis. Posttranslational cleavage of the TFIIA precursor by the oncologically relevant protease Taspase1 is crucial in this process. In contrast, the relevance of Taspase1-mediated TFIIA cleavage during oncogenesis of HNSCC is not characterized yet. Here, we performed genome-wide expression profiling of HNSCC which revealed significant downregulation of the TFIIA downstream target CDKN2A. To identify potential regulatory mechanisms of TFIIA on cellular level, we characterized nuclear-cytoplasmic transport and Taspase1-mediated cleavage of TFIIA variants. Unexpectedly, we identified an evolutionary conserved nuclear export signal (NES) counteracting nuclear localization and thus, transcriptional activity of TFIIA. Notably, proteolytic processing of TFIIA by Taspase1 was found to mask the NES, thereby promoting nuclear localization and transcriptional activation of TFIIA target genes, such as CDKN2A. Collectively, we here describe a hitherto unknown mechanism how cellular localization and Taspase1 cleavage fine-tunes transcriptional activity of TFIIA in HNSCC.
Collapse
Affiliation(s)
- Alena Gribko
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Angelina Hahlbrock
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Sven Becker
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Jan Hagemann
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Max Deichelbohrer
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Andreas Hildebrandt
- Scientific Computing and Bioinformatics, Johannes Gutenberg University, Staudingerweg 9, Mainz, 55128, Germany
| | - Negusse Habtemichael
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - D Wünsch
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany.
| |
Collapse
|
15
|
Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, Nabavi SM. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev 2016; 31:55-66. [PMID: 27453478 DOI: 10.1016/j.arr.2016.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/19/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Abstract
Current ageing research is aimed not only at the promotion of longevity, but also at improving health span through the discovery and development of new therapeutic strategies by investigating molecular and cellular pathways involved in cellular senescence. Understanding the mechanism of action of polyphenolic compounds targeting mTOR (mechanistic target of rapamycin) and related pathways opens up new directions to revolutionize ways to slow down the onset and development of age-dependent degeneration. Herein, we will discuss the mechanisms by which polyphenols can delay the molecular pathogenesis of ageing via manipulation or more specifically inhibition of mTOR-signaling pathways. We will also discuss the implications of polyphenols in targeting mTOR and its related pathways on health life span extension and longevity..
Collapse
|
16
|
Pace E, Di Vincenzo S, Ferraro M, Bruno A, Dino P, Bonsignore MR, Battaglia S, Saibene F, Lanata L, Gjomarkaj M. Carbocysteine counteracts the effects of cigarette smoke on cell growth and on the SIRT1/FoxO3 axis in bronchial epithelial cells. Exp Gerontol 2016; 81:119-28. [PMID: 27237816 DOI: 10.1016/j.exger.2016.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cigarette smoke may accelerate cellular senescence by increasing oxidative stress. Altered proliferation and altered expression of anti-aging factors, including SIRT1 and FoxO3, characterise cellular senescence. The effects of carbocysteine on the SIRT1/FoxO3 axis and on downstream molecular mechanisms in human bronchial epithelial cells exposed to cigarette smoke are largely unknown. AIMS Aim of this study was to explore whether carbocysteine modulated SIRT1/FoxO3 axis, and downstream molecular mechanisms associated to cellular senescence, in a bronchial epithelial cell line (16-HBE) exposed to cigarette smoke. METHODS 16HBE cells were stimulated with/without cigarette smoke extracts (CSE) and carbocysteine. Flow cytometry and clonogenic assay were used to assess cell proliferation; western blot analysis was used for assessing nuclear expression of SIRT1 and FoxO3. The nuclear co-localization of SIRT1 and FoxO3 was assessed by fluorescence microscopy. Beta galactosidase (a senescence marker) and SIRT1 activity were assessed by specific staining and colorimetric assays, respectively. ChiP Assay and flow cytometry were used for assessing survivin gene regulation and protein expression, respectively. RESULTS CSE decreased cell proliferation, the nuclear expression of SIRT1 and FoxO3 and increased beta galactosidase staining. CSE, reduced SIRT1 activity and FoxO3 localization on survivin promoter thus increasing survivin expression. In CSE stimulated bronchial epithelial cells carbocysteine reverted these phenomena by increasing cell proliferation, and SIRT1 and FoxO3 nuclear expression, and by reducing beta galactosidase staining and survivin expression. CONCLUSIONS The study shows for the first time that carbocysteine may revert some senescence processes induced by oxidative stress due to cigarette smoke exposure.
Collapse
Affiliation(s)
- E Pace
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | - S Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - M Ferraro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - A Bruno
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - P Dino
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - M R Bonsignore
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), University of Palermo, Palermo, Italy
| | - S Battaglia
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.M.I.S), University of Palermo, Palermo, Italy
| | | | - L Lanata
- Dompè Medical Affair, Milan, Italy
| | - M Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
17
|
Hrabia A, Leśniak-Walentyn A, Ocłoń E, Sechman A. Changes in proliferating and apoptotic markers in the oviductal magnum of chickens during sexual maturation. Theriogenology 2016; 85:1590-1598. [DOI: 10.1016/j.theriogenology.2016.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 12/15/2022]
|
18
|
Serum Survivin Levels and Outcome of Chemotherapy in Patients with Malignant Mesothelioma. DISEASE MARKERS 2015; 2015:316739. [PMID: 26451067 PMCID: PMC4588029 DOI: 10.1155/2015/316739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Survivin is an inhibitor of apoptosis protein involved in the regulation of cell proliferation that could be used as a marker for cancer diagnosis or prognosis. Our aim was to evaluate whether serum survivin levels influence the outcome of cisplatin-based chemotherapy in patients with malignant mesothelioma (MM). METHODS Serum survivin levels were determined using human survivin enzyme-linked immunosorbent assay in 78 MM patients before chemotherapy, after chemotherapy, and at disease progression. The influence on tumor response and survival was evaluated using nonparametric tests and Cox regression. RESULTS A median serum survivin level at diagnosis was 4.1 (0-217.5) pg/mL. Patients with a progressive disease had significantly higher survivin levels before chemotherapy (p = 0.041). A median serum survivin level after chemotherapy was 73.1 (0-346.2) pg/mL. If survivin levels increased after chemotherapy, patients had, conversely, better response (p = 0.001, OR = 5.40, 95% CI = 1.98-14.72). Unexpectedly, patients with increased survivin levels after chemotherapy also had longer progression-free (p < 0.001, HR = 0.33, 95% CI = 0.20-0.57) and overall survival (p = 0.001, HR = 0.29, 95% CI = 0.14-0.58). CONCLUSIONS These results suggest that serum survivin levels before and during chemotherapy could serve as a biomarker predicting MM treatment response.
Collapse
|