1
|
Smit L, Pijpe A, Nguyen C, Hartsuiker T, Stoop M, van Heel A, Bosma E, van der Vlies CH, van Zuijlen PPM, van Baar ME, Middelkoop E. Characteristics, treatments and outcomes in patients with severe burn wounds; a 10 year cohort study on acute and reconstructive treatment. PLoS One 2024; 19:e0313287. [PMID: 39576769 PMCID: PMC11584074 DOI: 10.1371/journal.pone.0313287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Reports on treatment characteristics and long term outcomes for severe burns are scarce, while the need to compare outcomes of novel treatment modalities to standard of care is increasing. Our national database on burn treatment enabled analysis of patient as well as treatment characteristics during acute treatment and following reconstructive procedures. Furthermore, outcome data of longitudinal scar assessments were analysed from a single burn centre database. Acute and reconstructive data were analysed for patients admitted to the three Dutch burn centres with total body surface area burned of ≥ 20% TBSA. Long term outcome was analysed from a single centre scar database, both for a period of 2009-2019. Treatment characteristics from 396 surviving acute burn patients were analysed. Surgical treatment was required in 89.6% of these patients and 110 patients (27.8%) needed reconstructive surgery in the years after the burn incident, with a mean of 4.4 reconstructive procedures per patient. Main indications were contractures (70.5%) and arms (45.0%) and head and neck region (41.2%) were most frequently affected. Techniques used for reconstructive corrections were predominantly excision, release and flaps (54.7%), followed by skin transplants (32.4%). Scar quality was significantly worse in patients with more severe burns compared to those with TBSA < 20% during prolonged times. These data provide insight into health care utilization, treatment characteristics and outcomes in severely burned patients. These real-world data can guide future development of improved treatment strategies for at risk patients as well as anatomical locations.
Collapse
Affiliation(s)
- Lucindi Smit
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS), Tissue Function and Regeneration, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anouk Pijpe
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS), Tissue Function and Regeneration, Amsterdam UMC, Amsterdam, The Netherlands
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Cindy Nguyen
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS), Tissue Function and Regeneration, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tara Hartsuiker
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Matthea Stoop
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Anouk van Heel
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Eelke Bosma
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Martini Hospital, Groningen, The Netherlands
| | - Cornelis H. van der Vlies
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Maasstad Hospital, Rotterdam, The Netherlands
- Erasmus MC, Trauma Research Unit, Department of Surgery, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul P. M. van Zuijlen
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS), Tissue Function and Regeneration, Amsterdam UMC, Amsterdam, The Netherlands
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
- Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, The Netherlands
- Pediatric Surgical Centre, Emma Children’s Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Margriet E. van Baar
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Maasstad Hospital, Rotterdam, The Netherlands
- Department of Public Health, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS), Tissue Function and Regeneration, Amsterdam UMC, Amsterdam, The Netherlands
- Alliance of Dutch Burn Care (ADBC) and Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Dutch Burn Repository group
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, The Netherlands
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Dearman BL, Boyce ST, Greenwood JE. Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation. Front Surg 2021; 8:640879. [PMID: 34504864 PMCID: PMC8421760 DOI: 10.3389/fsurg.2021.640879] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/31/2021] [Indexed: 01/17/2023] Open
Abstract
Skin tissue bioengineering is an emerging field that brings together interdisciplinary teams to promote successful translation to clinical care. Extensive deep tissue injuries, such as large burns and other major skin loss conditions, are medical indications where bioengineered skin substitutes (that restore both dermal and epidermal tissues) are being studied as alternatives. These may not only reduce mortality but also lessen morbidity to improve quality of life and functional outcome compared with the current standards of care. A common objective of dermal-epidermal therapies is to reduce the time required to accomplish stable closure of wounds with minimal scar in patients with insufficient donor sites for autologous split-thickness skin grafts. However, no commercially-available product has yet fully satisfied this objective. Tissue engineered skin may include cells, biopolymer scaffolds and drugs, and requires regulatory review to demonstrate safety and efficacy. They must be scalable for manufacturing and distribution. The advancement of technology and the introduction of bioreactors and bio-printing for skin tissue engineering may facilitate clinical products' availability. This mini-review elucidates the reasons for the few available commercial skin substitutes. In addition, it provides insights into the challenges faced by surgeons and scientists to develop new therapies and deliver the results of translational research to improve patient care.
Collapse
Affiliation(s)
- Bronwyn L. Dearman
- Skin Engineering Laboratory, Adult Burns Centre, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adult Burns Centre, Royal Adelaide Hospital, Adelaide, SA, Australia
- Faculty of Health and Medical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Steven T. Boyce
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - John E. Greenwood
- Skin Engineering Laboratory, Adult Burns Centre, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adult Burns Centre, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
3
|
Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med 2021; 6:35. [PMID: 34140525 PMCID: PMC8211795 DOI: 10.1038/s41536-021-00144-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers' purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient's health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.
| | - Kevin H Kim
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Gonzalo Blasco-Morente
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Cortez Ghio S, Larouche D, Doucet EJ, Germain L. The role of cultured autologous bilayered skin substitutes as epithelial stem cell niches after grafting: A systematic review of clinical studies. BURNS OPEN 2021. [DOI: 10.1016/j.burnso.2021.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
5
|
Goyer B, Larouche D, Kim DH, Veillette N, Pruneau V, Bernier V, Auger FA, Germain L. Immune tolerance of tissue-engineered skin produced with allogeneic or xenogeneic fibroblasts and syngeneic keratinocytes grafted on mice. Acta Biomater 2019; 90:192-204. [PMID: 30953802 DOI: 10.1016/j.actbio.2019.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 01/26/2023]
Abstract
Organs are needed for the long-term replacement of diseased or wounded tissues. Various technologies based on cells seeded in synthetic or biomaterial scaffolds, or scaffold-free methods have been developed in order to produce substitutes that mimic native organs and tissues. For cell-based approaches, the use of living allogeneic fibroblasts could potentially lead to the production of "off-the-shelf" bioengineered organs/tissues. However, questions remain regarding the outcome of allogeneic grafts in terms of persistence of allogeneic cells, tolerance and the host immune reaction against the tissue after implantation. To evaluate graft tolerance of engineered-tissues containing non-autologous fibroblasts, tissue-engineered skin substitutes (TESs) produced with syngeneic, allogeneic or xenogeneic fibroblasts associated with syngeneic, allogeneic or xenogeneic epithelial cells were grafted in mice as primary and secondary grafts. The immune response was evaluated by histological analysis and immunodetection of M2 macrophages, CD4- and CD8-positive T cells, 15, 19, 35 and 56 days after grafting. Tissue-engineered skin composed of non-autologous epithelial cells were rejected. In contrast, TESs composed of non-autologous fibroblasts underlying syngeneic epithelial cells were still present 56 days after grafting. This work shows that TES composed of non-autologous fibroblasts and autologous epithelial cells are not rejected after grafting. STATEMENT OF SIGNIFICANCE: We found that tissue-engineered skin substitutes produced by a scaffold-free cell-based approach from allogeneic fibroblasts and autologous epithelial cells are not rejected after grafting and allow for the permanent coverage of a full-thickness skin wounds. In the field of tissue engineering, these findings open the possibility of selecting a human fibroblastic or stromal cell population based on its biological properties and adequate biosafety, banking it, in order to produce "ready-to-use" bioengineered organs/tissues that could be grafted to any patient without eliciting immune reaction after grafting. Our results can be generalized to any organs produced from fibroblasts. Thus, it is a great step with multiple applications in tissue engineering and transplantation.
Collapse
Affiliation(s)
- Benjamin Goyer
- Centre de recherche du CHU de Québec - Université Laval, Department of Surgery, Faculty of Medicine, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Canada
| | - Danielle Larouche
- Centre de recherche du CHU de Québec - Université Laval, Department of Surgery, Faculty of Medicine, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Canada
| | - Dong Hyun Kim
- Centre de recherche du CHU de Québec - Université Laval, Department of Surgery, Faculty of Medicine, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Canada
| | - Noémie Veillette
- Centre de recherche du CHU de Québec - Université Laval, Department of Surgery, Faculty of Medicine, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Canada
| | - Virgile Pruneau
- Centre de recherche du CHU de Québec - Université Laval, Department of Surgery, Faculty of Medicine, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Canada
| | - Vincent Bernier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Canada
| | - François A Auger
- Centre de recherche du CHU de Québec - Université Laval, Department of Surgery, Faculty of Medicine, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Canada
| | - Lucie Germain
- Centre de recherche du CHU de Québec - Université Laval, Department of Surgery, Faculty of Medicine, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Canada.
| |
Collapse
|
6
|
Zöller NN, Hofmann M, Butting M, Hrgovic I, Bereiter-Hahn J, Bernd A, Kaufmann R, Kippenberger S, Valesky E. Assessment of Melanogenesis in a Pigmented Human Tissue-Cultured Skin Equivalent. Indian J Dermatol 2019; 64:85-89. [PMID: 30983601 PMCID: PMC6440179 DOI: 10.4103/ijd.ijd_410_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Organotypic tissue-cultured skin equivalents are used for a broad range of applications either as possible substitute for animal tests or for transplantation in patient-centered care. Aims: In this study, we implemented melanocytes in a tissue-cultured full-thickness skin equivalent, consisting of epidermis and dermis. The versatility of this skin-like model with respect to pigmentation and morphological criteria was tested. Materials and Methods: Pigmented skin equivalents were morphologically characterized, and melanogenesis was evaluated after treatment with kojic acid – a tyrosinase inhibitor and forskolin – a well-known activator of the cyclic adenosine 3,5-monophosphate pathway. Pigmentation was measured either by determination of the extinction at 400 nm after melanin extraction with KOH correlated to a melanin standard curve or by reflectance colorimetric analysis, monitoring reflectance of 660 nm and 880 nm emitting diodes. Results: The morphological analysis revealed characteristic epidermal stratification with melanocytes located at the basal layer. Stimulation with forskolin increased the pigmentation, whereas treatment with kojic acid caused bleaching. Conclusion: The present study demonstrates that the herein-introduced organotypic tissue-cultured skin equivalent is comparable to the normal human skin and its versatility in tests regarding skin pigmentation. Therefore, this model might help understand diseases with dysfunctional pigmentation such as melasma, vitiligo, and postinflammatory hyperpigmentation.
Collapse
Affiliation(s)
- Nadja Nicole Zöller
- Department of Dermatology, Venereology, and Allergology, Goethe University Hospital, Frankfurt/Main, Germany
| | - Matthias Hofmann
- Department of Dermatology, Venereology, and Allergology, Goethe University Hospital, Frankfurt/Main, Germany
| | - Manuel Butting
- Department of Dermatology, Venereology, and Allergology, Goethe University Hospital, Frankfurt/Main, Germany
| | - Igor Hrgovic
- Department of Dermatology, Venereology, and Allergology, Goethe University Hospital, Frankfurt/Main, Germany
| | | | - August Bernd
- Department of Dermatology, Venereology, and Allergology, Goethe University Hospital, Frankfurt/Main, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology, and Allergology, Goethe University Hospital, Frankfurt/Main, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology, and Allergology, Goethe University Hospital, Frankfurt/Main, Germany
| | - Eva Valesky
- Department of Dermatology, Venereology, and Allergology, Goethe University Hospital, Frankfurt/Main, Germany
| |
Collapse
|
7
|
Kreimendahl F, Marquardt Y, Apel C, Bartneck M, Zwadlo-Klarwasser G, Hepp J, Jockenhoevel S, Baron JM. Macrophages significantly enhance wound healing in a vascularized skin model. J Biomed Mater Res A 2019; 107:1340-1350. [PMID: 30724457 DOI: 10.1002/jbm.a.36648] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Tissue-engineered dermo-epidermal skin grafts could be applied for the treatment of large skin wounds or used as an in vitro wound-healing model. However, there is currently no skin replacement model that includes both, endothelial cells to simulate vascularization, and macrophages to regulate wound healing and tissue regeneration. Here, we describe for the first time a tissue-engineered, fully vascularized dermo-epidermal skin graft based on a fibrin hydrogel scaffold, using exclusively human primary cells. We show that endothelial cells and human dermal fibroblasts form capillary-like structures within the dermis whereas keratinocytes form the epithelial cell layer. Macrophages played a key role in controlling the number of epithelial cells and their morphology after skin injury induced with a CO2 laser. The activation of selected cell types was confirmed by mRNA analysis. Our data underline the important role of macrophages in vascularized skin models for application as in vitro wound healing models or for skin replacement therapy. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1340-1350, 2019.
Collapse
Affiliation(s)
- Franziska Kreimendahl
- Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Apel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, Aachen, Germany
| | | | - Julia Hepp
- Department of Dermatology and Allergology, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
8
|
Extrinsic or Intrinsic Apoptosis by Curcumin and Light: Still a Mystery. Int J Mol Sci 2019; 20:ijms20040905. [PMID: 30791477 PMCID: PMC6412849 DOI: 10.3390/ijms20040905] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Curcumin—a rhizomal phytochemical from the plant Curcuma longa—is well known to inhibit cell proliferation and to induce apoptosis in a broad range of cell lines. In previous studies we showed that combining low curcumin concentrations and subsequent ultraviolet A radiation (UVA) or VIS irradiation induced anti-proliferative and pro-apoptotic effects. There is still debate whether curcumin induces apoptosis via the extrinsic or the intrinsic pathway. To address this question, we investigated in three epithelial cell lines (HaCaT, A431, A549) whether the death receptors CD95, tumor necrosis factor (TNF)-receptor I and II are involved in apoptosis induced by light and curcumin. Cells were incubated with 0.25–0.5 µg/mL curcumin followed by irradiation with 1 J/cm2 UVA. This treatment was combined with inhibitors specific for distinct membrane-bound death receptors. After 24 h apoptosis induction was monitored by quantitative determination of cytoplasmic histone-associated-DNA-fragments. Validation of our test system showed that apoptosis induced by CH11 and TNF-α could be completely inhibited by their respective antagonists. Interestingly, apoptosis induced by curcumin/light treatment was reversed by none of the herein examined death receptor antagonists. These results indicate a mechanism of action independent from classical death receptors speaking for intrinsic activation of apoptosis. It could be speculated that a shift in cellular redox balance might prompt the pro-apoptotic processes.
Collapse
|
9
|
Cortez Ghio S, Cantin-Warren L, Guignard R, Larouche D, Germain L. Are the Effects of the Cholera Toxin and Isoproterenol on Human Keratinocytes' Proliferative Potential Dependent on Whether They Are Co-Cultured with Human or Murine Fibroblast Feeder Layers? Int J Mol Sci 2018; 19:E2174. [PMID: 30044428 PMCID: PMC6121595 DOI: 10.3390/ijms19082174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Human keratinocyte culture has provided the means to treat burns, wounds and skin pathologies. To date, to efficiently culture keratinocytes, cells are cultured on an irradiated feeder layer (iFL), either comprising human (iHFL) or murine (i3T3FL) fibroblasts, and the culture medium is supplemented with a cyclic adenosine monophosphate (cAMP) accumulation inducing agent such as isoproterenol (ISO) or cholera toxin (CT). Previous studies have characterized how the feeder layer type and the cAMP inducer type influence epithelial cells' phenotype independently from one another, but it is still unknown if an optimal combination of feeder layer and cAMP inducer types exists. We used sophisticated statistical models to search for a synergetic effect of feeder layer and cAMP inducer types on human keratinocytes' proliferative potential. Our data suggests that, when culturing human keratinocytes, using iHFL over i3T3FL increases population doublings and colony-forming efficiency through signaling pathways involving Ak mouse strain thymoma (Akt, also known as protein kinase B) isoforms 1 to 3, signal transducer and activator of transcription 5 (STAT5), p53, and adenosine monophosphate activated protein kinase α1 (AMPKα1). Both tested cAMP inducers ISO and CT yielded comparable outcomes. However, no significant synergy between feeder layer and cAMP inducer types was detected. We conclude that, to promote human keratinocyte growth in the early passages of culture, co-culturing them with a human feeder layer is preferable to a murine feeder layer.
Collapse
Affiliation(s)
- Sergio Cortez Ghio
- Université Laval Research Center on Experimental Organogenesis/LOEX, Québec, QC G1J 1Z4, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1J 1Z4, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Laurence Cantin-Warren
- Université Laval Research Center on Experimental Organogenesis/LOEX, Québec, QC G1J 1Z4, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1J 1Z4, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Rina Guignard
- Université Laval Research Center on Experimental Organogenesis/LOEX, Québec, QC G1J 1Z4, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1J 1Z4, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Danielle Larouche
- Université Laval Research Center on Experimental Organogenesis/LOEX, Québec, QC G1J 1Z4, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1J 1Z4, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Lucie Germain
- Université Laval Research Center on Experimental Organogenesis/LOEX, Québec, QC G1J 1Z4, Canada.
- Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Québec, QC G1J 1Z4, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
10
|
Petry L, Kippenberger S, Meissner M, Kleemann J, Kaufmann R, Rieger UM, Wellenbrock S, Reichenbach G, Zöller N, Valesky E. Directing adipose-derived stem cells into keratinocyte-like cells: impact of medium composition and culture condition. J Eur Acad Dermatol Venereol 2018; 32:2010-2019. [PMID: 29705993 DOI: 10.1111/jdv.15010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ASC) are known to transdifferentiate into a wide range of different cell species in vitro including along the epidermal lineage. This property makes them a promising tool for regenerative medicine to restore the epidermal barrier. OBJECTIVE This study is dedicated to identify in vitro conditions enabling transdifferentiation to a keratinocyte-like phenotype. In particular, the impact of different culture conditions (media compositions, 2D, 3D cultures) and extracellular matrix (ECM) molecules was evaluated. METHODS Adipose-derived stem cells derived from subcutaneous abdominal fat were characterized by stemness-associated markers and subjected to different media. Epithelial differentiation in 2D cultures was monitored by pan-cytokeratin expression using flow cytometry and immunocytochemistry. To evaluate the impact of different ECM molecules on epidermal stratification, 3D cultures were produced, lifted to the air-liquid interface (ALI) and examined by histological analysis and quantitative real-time RT-PCR. RESULTS We identified a medium composition containing retinoic acid, hydrocortisone, ascorbic acid and BMP-4 enabling maximum pan-cytokeratin expression in 2D cultures. Moreover, adhesion to type IV collagen further promotes the pan-cytokeratin expression. When cultures were lifted to the ALI, significant stratification was observed, particularly in supports coated with type IV collagen or fibronectin. Moreover, epidermal differentiation markers (involucrin, cytokeratin 1 and 14) become induced. CONCLUSION Conditions with hampered wound healing such as non-healing ulcers demand new treatment regimes. The here introduced optimized protocols for transdifferentiation of ASC into keratinocyte-like cells may help to establish more effective treatment procedures.
Collapse
Affiliation(s)
- L Petry
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - S Kippenberger
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - M Meissner
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - J Kleemann
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - R Kaufmann
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - U M Rieger
- Department of Plastic & Aesthetic, Reconstructive & Hand Surgery, AGAPLESION Markus Hospital, Frankfurt/Main, Germany
| | - S Wellenbrock
- Department of Plastic & Aesthetic, Reconstructive & Hand Surgery, AGAPLESION Markus Hospital, Frankfurt/Main, Germany
| | - G Reichenbach
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - N Zöller
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - E Valesky
- Dermatology, Venereology and Allergology, Clinic of the Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
11
|
König A, Zöller N, Kippenberger S, Bernd A, Kaufmann R, Layer PG, Heselich A. Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:115-123. [DOI: 10.1016/j.jphotobiol.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
|
12
|
Girard D, Laverdet B, Buhé V, Trouillas M, Ghazi K, Alexaline MM, Egles C, Misery L, Coulomb B, Lataillade JJ, Berthod F, Desmoulière A. Biotechnological Management of Skin Burn Injuries: Challenges and Perspectives in Wound Healing and Sensory Recovery. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:59-82. [DOI: 10.1089/ten.teb.2016.0195] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dorothée Girard
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Betty Laverdet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Virginie Buhé
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Marina Trouillas
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Kamélia Ghazi
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Maïa M. Alexaline
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Christophe Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Laurent Misery
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Bernard Coulomb
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Jean-Jacques Lataillade
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - François Berthod
- Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec and Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
13
|
Naves L, Dhand C, Almeida L, Rajamani L, Ramakrishna S. In vitro skin models and tissue engineering protocols for skin graft applications. Essays Biochem 2016; 60:357-369. [DOI: 10.1042/ebc20160043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
In this review, we present a brief introduction of the skin structure, a concise compilation of skin-related disorders, and a thorough discussion of different in vitro skin models, artificial skin substitutes, skin grafts, and dermal tissue engineering protocols. The advantages of the development of in vitro skin disorder models, such as UV radiation and the prototype model, melanoma model, wound healing model, psoriasis model, and full-thickness model are also discussed. Different types of skin grafts including allografts, autografts, allogeneic, and xenogeneic are described in detail with their associated applications. We also discuss different tissue engineering protocols for the design of various types of skin substitutes and their commercial outcomes. Brief highlights are given of the new generation three-dimensional printed scaffolds for tissue regeneration applications.
Collapse
Affiliation(s)
- Lucas B. Naves
- CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
- Centre for Textile Science and Technology, University of Minho, Guimarães 4800-058, Portugal
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Luis Almeida
- Centre for Textile Science and Technology, University of Minho, Guimarães 4800-058, Portugal
| | | | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Zöller N, König A, Butting M, Kaufmann R, Bernd A, Valesky E, Kippenberger S. Water-filtered near-infrared influences collagen synthesis of keloid-fibroblasts in contrast to normal foreskin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:194-202. [DOI: 10.1016/j.jphotobiol.2016.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/13/2016] [Indexed: 01/24/2023]
|
15
|
Chua AWC, Khoo YC, Tan BK, Tan KC, Foo CL, Chong SJ. Skin tissue engineering advances in severe burns: review and therapeutic applications. BURNS & TRAUMA 2016; 4:3. [PMID: 27574673 PMCID: PMC4963933 DOI: 10.1186/s41038-016-0027-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes: a class of products that is still fraught with limitations for clinical use. Although the ability to grow autologous keratinocytes in-vitro from a small skin biopsy into sheets of stratified epithelium (within 3 to 4 weeks) helped alleviate the problem of insufficient donor site for extensive burn, many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision. Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully. Despite the availability of these commercial products, they all suffer from the same problems of extremely high cost, sub-normal skin microstructure and inconsistent engraftment, especially in full thickness burns. Clinical practice for severe burn treatment has since evolved to incorporate these tissue-engineered skin substitutes, usually as an adjunct to speed up epithelization for wound closure and/or to improve quality of life by improving the functional and cosmetic results long-term. This review seeks to bring the reader through the beginnings of skin tissue engineering, the utilization of some of the key products developed for the treatment of severe burns and the hope of harnessing stem cells to improve on current practice.
Collapse
Affiliation(s)
- Alvin Wen Choong Chua
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Yik Cheong Khoo
- Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Bien Keem Tan
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| | - Kok Chai Tan
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore
| | - Chee Liam Foo
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore
| | - Si Jack Chong
- Singapore General Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, 20 College Road, Academia Level 4, Singapore, 169845 Singapore ; Singapore General Hospital, Skin Bank Unit, Block 4 Level 3 Room 15, Outram Road, Singapore, 169608 Singapore ; Transplant Tissue Centre, c/o Skin Bank Unit, Singapore General Hospital, Block 4 Level 3 Room A7, Outram Road, Singapore, 169608 Singapore
| |
Collapse
|