1
|
Shi B, Zhang Z, Lv X, An K, Li L, Xia Z. Screening of Genes Related to Fat Deposition of Pekin Ducks Based on Transcriptome Analysis. Animals (Basel) 2024; 14:268. [PMID: 38254437 PMCID: PMC10812498 DOI: 10.3390/ani14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Subcutaneous fat deposition is an important index with which to evaluate meat-producing ducks, and affects their meat quality and feed conversion rate. Studying the differentially expressed genes in subcutaneous fat will help to comprehensively understand the potential mechanisms regulating fat deposition in ducks. In this study, 72 Nankou 1 Pekin Ducks and 72 Jingdian Pekin Ducks (half male and half female) at 42 days of age were selected for slaughter performance and transcriptome analysis. The results showed that the breast-muscle yield of Nankou 1 ducks was significantly higher than that of Jingdian ducks, but that the abdominal fat yield and subcutaneous fat yield were higher than that of Jingdian ducks. Thousands of DEGs, including many important genes involved in fat metabolism regulation, were detected by transcriptome. KEGG enrichment analysis showed that the DEGs were significantly enriched on pathways such as regulation of lipolysis in adipocytes, primary bile acid biosynthesis, and biosynthesis of unsaturated fatty acids. SCD, FGF7, LTBP1, PNPLA3, ADCY2, and ACOT8 were selected as candidate genes for regulating subcutaneous fat deposition. The results indicated that Nankou 1 had superior fat deposition ability compared to Jingdian ducks, and that the candidate genes regulated fat deposition by regulating fat synthesis and decomposition.
Collapse
Affiliation(s)
- Bozhi Shi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Ziyue Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650500, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (B.S.); (Z.Z.); (K.A.)
| |
Collapse
|
2
|
Zhu Y, Zhang J, Wang C, Zheng T, Di S, Wang Y, Fei W, Liang W, Wang L. Ameliorative Effect of Ethanolic Echinacea purpurea against Hyperthyroidism-Induced Oxidative Stress via AMRK and PPAR Signal Pathway Using Transcriptomics and Network Pharmacology Analysis. Int J Mol Sci 2022; 24:ijms24010187. [PMID: 36613632 PMCID: PMC9820381 DOI: 10.3390/ijms24010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Echinacea purpurea (L.) Moench (EP) is a well-known botanical supplement with antioxidant characteristics. However, the effects of EP on oxidative stress induced by hyperthyroidism have not yet been studied. This study was designed to evaluate the antioxidative effect of ethanolic Echinacea Purpurea (EEP) on hyperthyroidism-induced oxidative stress mice using an integrated strategy combining transcriptomics with network pharmacology analysis. Firstly, a hyperthyroidism mice model was induced via thyroxine (160 mg/kg) and EEP (1, 2, or 4 g/kg) once daily for 2 weeks. Body weight, thyroid-stimulating hormones, and oxidative stress markers were tested. Secondly, EEP regulating the potential genes at transcript level were analyzed. Thirdly, a network pharmacology based on the constituents of EEP identified using UPLC-Q-TOF-MS analysis was adopted. Finally, a joint analysis was performed to identify the key pathway. The results showed that EEP significantly changed the thyroid-stimulating hormones and oxidative stress markers. Meanwhile, RT-qPCR and Western Blotting demonstrated that the mechanism of the antioxidant effect of EEP reversed the mRNA expression of EHHADH, HMGCR and SLC27A2 and the protein expression of FABP and HMGCR in AMPK and PPAR signaling pathways. This study integrates transcriptomics with network pharmacology to reveal the mechanism of ameliorative effect of EEP on hyperthyroidism-induced oxidative stress.
Collapse
Affiliation(s)
- Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.Z.); (L.W.)
| | - Chun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Songrui Di
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinyin Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weican Liang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.Z.); (L.W.)
| |
Collapse
|
3
|
Suda M, Takatsuru Y, Amano I, Haraguchi S, Koibuchi N. Adult-onset hypothyroidism causes mechanical hypersensitivity due to peripheral nerve hyperexcitability based on voltage-gated potassium channel downregulation in male mice. J Neurosci Res 2021; 100:506-521. [PMID: 34935172 DOI: 10.1002/jnr.25001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022]
Abstract
Thyroid hormones play an important role in the central and peripheral nervous system functions. Approximately 50% of adult-onset hypothyroid patients have sensory symptoms including pain, possibly caused by peripheral neuropathy. However, the mechanism causing the pain has not been clarified. We generated an adult-onset hypothyroid model animal by administering 50 ppm propylthiouracil (PTU) for 5 weeks to male mice. Female mice were not tested in this study. Mechanical hypersensitivity, determined by the von Frey hair test, was observed during the PTU exposure and recovered after the exposure termination. The sciatic nerve compound action potential was also analyzed. Under single-pulse stimulation, no significant change in the threshold and conduction velocity was observed in the PTU-administered group. On the other hand, under train-pulse stimulation, the latency delay in the Aδ-fiber component was less in the PTU-administered group in Week 4 of PTU exposure, indicating relative hyperexcitability. Fluticasone, which is the anti-inflammatory agent with an ability to activate the voltage-gated potassium channel subfamily A (Kv1), restored the decrease in the latency change ratio by PTU exposure under the train-pulse stimulation supporting our hypothesis that Kv1 may be involved in the conductivity change. Kv1.1 protein level decreased significantly in the sciatic nerve of the PTU-administered group. These results indicate that adult-onset hypothyroidism causes mechanical hypersensitivity owing to hyperexcitability of the peripheral nerve and that reduction of Kv1.1 level may be involved in such alteration.
Collapse
Affiliation(s)
- Machiko Suda
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yusuke Takatsuru
- Department of Nutrition and Health Science, Toyo University, Ora-gun, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Shinagawa-ku, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
4
|
Capelli V, Grijota-Martínez C, Dragano NRV, Rial-Pensado E, Fernø J, Nogueiras R, Mittag J, Diéguez C, López M. Orally Induced Hyperthyroidism Regulates Hypothalamic AMP-Activated Protein Kinase. Nutrients 2021; 13:nu13124204. [PMID: 34959756 PMCID: PMC8708331 DOI: 10.3390/nu13124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Besides their direct effects on peripheral metabolic tissues, thyroid hormones (TH) act on the hypothalamus to modulate energy homeostasis. However, since most of the hypothalamic actions of TH have been addressed in studies with direct central administration, the estimation of the relative contribution of the central vs. peripheral effects in physiologic conditions of peripheral release (or administration) of TH remains unclear. In this study we used two different models of peripherally induced hyperthyroidism (i.e., T4 and T3 oral administration) to assess and compare the serum and hypothalamic TH status and relate them to the metabolic effects of the treatment. Peripheral TH treatment affected feeding behavior, overall growth, core body temperature, body composition, brown adipose tissue (BAT) morphology and uncoupling protein 1 (UCP1) levels and metabolic activity, white adipose tissue (WAT) browning and liver metabolism. This resulted in an increased overall uncoupling capacity and a shift of the lipid metabolism from WAT accumulation to BAT fueling. Both peripheral treatment protocols induced significant changes in TH concentrations within the hypothalamus, with T3 eliciting a downregulation of hypothalamic AMP-activated protein kinase (AMPK), supporting the existence of a central action of peripheral TH. Altogether, these data suggest that peripherally administered TH modulate energy balance by various mechanisms; they also provide a unifying vision of the centrally mediated and the direct local metabolic effect of TH in the context of hyperthyroidism.
Collapse
Affiliation(s)
- Valentina Capelli
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
- Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Carmen Grijota-Martínez
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain;
| | - Nathalia R. V. Dragano
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Eval Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Jens Mittag
- Institute for Endocrinology and Diabetes—Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, 23562 Lübeck, Germany;
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
- Correspondence: ; Tel.: +34-881815420
| |
Collapse
|
5
|
Xiong L, Pei J, Chu M, Wu X, Kalwar Q, Yan P, Guo X. Fat Deposition in the Muscle of Female and Male Yak and the Correlation of Yak Meat Quality with Fat. Animals (Basel) 2021; 11:ani11072142. [PMID: 34359275 PMCID: PMC8300776 DOI: 10.3390/ani11072142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the differences in fat deposition between female (FYs) and male yaks (MYs). Compared with MYs, the tenderness, L*, marbling, absolute content of fat, and most fatty acids (FAs) of longissimus dorsi (LD) in FYs were higher or better (p < 0.05), whereas the relative content of polyunsaturated fatty acids (PUFAs) and n-3 PUFAs were lower (p < 0.01). The absolute content of fat, C18:0, cis-C18:2, cis-C18:1, and C24:0 were positively correlated with L*45 min, b*24 h, tenderness, and marbling score of LD in FYs and MYs (p < 0.05), respectively. LPL, FATP2, ELOVL6, HADH, HACD, and PLINS genes play a crucial role in improving the marbling score and tenderness of yak meat. The results of gene expression and protein synthesis showed the effect of gender to FA biosynthesis, FA transport, lipolysis, and FA oxidation in the adipose tissue of yak was realized by the expressions of ME1, SCD, ACSL5, LPL, FABP1, PLIN4, and PLIN2 in peroxisome proliferators-activated receptor (PPAR) signaling. This study established a theoretical basis for the improvement of the meat quality of yak and molecular breeding.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Qudratullah Kalwar
- Department of Animal Reproduction, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan;
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: (P.Y.); (X.G.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (X.G.)
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: (P.Y.); (X.G.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (X.G.)
| |
Collapse
|
6
|
Ruan D, Zhuang Z, Ding R, Qiu Y, Zhou S, Wu J, Xu C, Hong L, Huang S, Zheng E, Cai G, Wu Z, Yang J. Weighted Single-Step GWAS Identified Candidate Genes Associated with Growth Traits in a Duroc Pig Population. Genes (Basel) 2021; 12:genes12010117. [PMID: 33477978 PMCID: PMC7835741 DOI: 10.3390/genes12010117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Growth traits are important economic traits of pigs that are controlled by several major genes and multiple minor genes. To better understand the genetic architecture of growth traits, we performed a weighted single-step genome-wide association study (wssGWAS) to identify genomic regions and candidate genes that are associated with days to 100 kg (AGE), average daily gain (ADG), backfat thickness (BF) and lean meat percentage (LMP) in a Duroc pig population. In this study, 3945 individuals with phenotypic and genealogical information, of which 2084 pigs were genotyped with a 50 K single-nucleotide polymorphism (SNP) array, were used for association analyses. We found that the most significant regions explained 2.56–3.07% of genetic variance for four traits, and the detected significant regions (>1%) explained 17.07%, 18.59%, 23.87% and 21.94% for four traits. Finally, 21 genes that have been reported to be associated with metabolism, bone growth, and fat deposition were treated as candidate genes for growth traits in pigs. Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses implied that the identified genes took part in bone formation, the immune system, and digestion. In conclusion, such full use of phenotypic, genotypic, and genealogical information will accelerate the genetic improvement of growth traits in pigs.
Collapse
Affiliation(s)
- Donglin Ruan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Zhanwei Zhuang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Rongrong Ding
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Yibin Qiu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Shenping Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jie Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Cineng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Z.W.); (J.Y.)
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.R.); (Z.Z.); (R.D.); (Y.Q.); (S.Z.); (J.W.); (C.X.); (L.H.); (S.H.); (E.Z.); (G.C.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Z.W.); (J.Y.)
| |
Collapse
|
7
|
Xiong L, Pei J, Wu X, Kalwar Q, Liang C, Guo X, Chu M, Bao P, Yao X, Yan P. The Study of the Response of Fat Metabolism to Long-Term Energy Stress Based on Serum, Fatty Acid and Transcriptome Profiles in Yaks. Animals (Basel) 2020; 10:ani10071150. [PMID: 32645922 PMCID: PMC7401609 DOI: 10.3390/ani10071150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The serum, fatty acid and transcriptome profiles in the subcutaneous fat of yaks were measured to explore the effect of long-term energy stress (ES) on fat metabolism during the cold season. The study indicated that under long-term ES during the cold season, the amount of fat in yaks was less, and fat mobilization was one of the main ways by which energy was obtained in yaks. Yaks regulated fat metabolism in subcutaneous fat primarily through adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling. Glucose (GLU) intake, fat catabolism, fatty acid synthesis and fatty acid oxidation in the subcutaneous fat of yaks were all inhibited, which resulted in the fat mobilization of yaks slowing as much as possible under long-term ES. In addition, the energy expenditures in fat cells were inhibited by regulating phosphatidylinositol 3’ -kinase (PI3K)-serine/threonine-protein kinase (Akt) andmammalian target of rapamycin (mTOR) signaling, and the limited energy obtained from GLU and fat was consumed by muscle and organs as much as possible. These factors led to an energy balance in yaks under long-term ES. The fat stored in yaks can be expended for as long as possible, and yaks can survive for as long as necessary under long-term ES. Abstract Long-term energy stress (ES) during the cold season is a serious problem for the breeding of yaks. In this paper, the response of fat metabolism in yaks to long-term ES during the cold season was studied. Gas chromatography (GC) analysis showed that the percentage of saturated fatty acids (SFAs) in the subcutaneous fat of the yaks in the ES group was 42.7%, which was less than the 56.6% in the CO group (p < 0.01) and the percentage of polyunsaturated unsaturated fatty acids (PUFAs) in the subcutaneous fat of the yaks in the ES group was 38.3%, which was more than the 26.0% in the CO group (p < 0.01). The serum analysis showed that fatty acid oxidation in yaks was increased under long-term ES. In the subcutaneous fat of yaks under long-term ES, the gene expression levels of glycerol-3-phosphate acyltransferase 4 (GPAT4), hormone-sensitive lipase (HSL), patatin-like phospholipase domain-containing protein 2 (PNPLA2), acyl-CoA dehydrogenase (ACAD), acyl-coenzyme A thioesterase 8 (ACOT8), facilitated glucose transporter (GLUT4), 3-oxoacyl-[acyl-carrier-protein] synthase (OXSM), oestradiol 17-beta-dehydrogenase 8 (HSD17B8) and malonate-Co-A ligase ACSF3 (ACSF3) were downregulated (q < 0.05), whereas the gene expression levels of aquaporin-7 (AQP7), long-chain-fatty-acid-CoA ligase (ACSL), elongation of very long chain fatty acids protein (ELOVL) and fatty acid desaturase 1 (FADS1) were upregulated (q < 0.05), indicating the inhibition of fat catabolism, fat anabolism, fatty acid oxidation, glucose (GLU) intake and SFA synthesis and the promotion of glycerinum (GLY) transportation and PUFA synthesis. Additional findings showed that the gene expression levels of leptin (LEP), adenosine 5′-monophosphate-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K) were upregulated (q < 0.05), whereas the gene expression levels of malonyl-CoA decarboxylase (MCD), sterol regulatory element-binding protein 1 (SREBF1), mammalian target of rapamycin (mTOR) and serine/threonine-protein kinase (AKT) were downregulated (q < 0.05), indicating that fat metabolism in the subcutaneous fat of yaks under ES was mainly regulated by AMPK signaling and mTOR and PI3K-AKT signaling were also involved. Energy consumption was inhibited in the subcutaneous fat itself. This study can provide a theoretical basis for the healthy breeding and genetic breeding of yaks.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Qudratullah Kalwar
- Department of Animal Reproduction, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan;
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xixi Yao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (X.W.); (C.L.); (X.G.); (M.C.); (P.B.); (X.Y.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondences: ; Tel.: +86-0931-2115288
| |
Collapse
|
8
|
Ochsner SA, McKenna NJ. No Dataset Left Behind: Mechanistic Insights into Thyroid Receptor Signaling Through Transcriptomic Consensome Meta-Analysis. Thyroid 2020; 30:621-639. [PMID: 31910096 PMCID: PMC7187985 DOI: 10.1089/thy.2019.0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Discovery-scale omics datasets relevant to thyroid receptors (TRs) and their physiological and synthetic bioactive small-molecule ligands allow for genome-wide interrogation of TR-regulated genes. These datasets have considerable collective value as a reference resource to allow researchers to routinely generate hypotheses addressing the mechanisms underlying the cell biology and physiology of TR signaling in normal and disease states. Methods: Here, we searched the Gene Expression Omnibus database to identify a population of publicly archived transcriptomic datasets involving genetic or pharmacological manipulation of either TR isoform in a mouse tissue or cell line. After initial quality control, samples were organized into contrasts (experiments), and transcript differential expression values and associated measures of significance were generated and committed to a consensome (for consensus omics) meta-analysis pipeline. To gain insight into tissue-selective functions of TRs, we generated liver- and central nervous system (CNS)-specific consensomes and identified evidence for genes that were selectively responsive to TR signaling in each organ. Results: The TR transcriptomic consensome ranks genes based on the frequency of their significant differential expression over the entire group of experiments. The TR consensome assigns elevated rankings both to known TR-regulated genes and to genes previously uncharacterized as TR-regulated, which shed mechanistic light on known cellular and physiological roles of TR signaling in different organs. We identify evidence for unreported genomic targets of TR signaling for which it exhibits strikingly distinct regulatory preferences in the liver and CNS. Moreover, the intersection of the TR consensome with consensomes for other cellular receptors sheds light on transcripts potentially mediating crosstalk between TRs and these other signaling paradigms. Conclusions: The mouse TR datasets and consensomes are freely available in the Signaling Pathways Project website for hypothesis generation, data validation, and modeling of novel mechanisms of TR regulation of gene expression. Our results demonstrate the insights into the mechanistic basis of thyroid hormone action that can arise from an ongoing commitment on the part of the research community to the deposition of discovery-scale datasets.
Collapse
Affiliation(s)
- Scott A. Ochsner
- The Signaling Pathways Project, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Neil J. McKenna
- The Signaling Pathways Project, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Address correspondence to: Neil J. McKenna, PhD, The Signaling Pathways Project, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
9
|
Pharmacological exposures may precipitate craniosynostosis through targeted stem cell depletion. Stem Cell Res 2019; 40:101528. [PMID: 31415959 PMCID: PMC6915957 DOI: 10.1016/j.scr.2019.101528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 01/03/2023] Open
Abstract
The Centers for Disease Control and Prevention, National Birth Defects Study suggests that environmental exposures including maternal thyroid diseases, maternal nicotine use, and use of selective serotonin reuptake inhibitors (SSRIs) may exacerbate incidence and or severity of craniofacial abnormalities including craniosynostosis. Premature fusion of a suture(s) of the skull defines the birth defect craniosynostosis which occurs in 1:1800–2500 births. A proposed mechanism of craniosynostosis is the disruption of proliferation and differentiation of cells in the perisutural area. Here, we hypothesize that pharmacological exposures including excess thyroid hormone, nicotine, and SSRIs lead to an alteration of stem cells within the sutures resulting in premature fusion. In utero exposure to nicotine and citalopram (SSRI) increased the risk of premature suture fusion in a wild-type murine model. Gli1+ stem cells were reduced, stem cell populations were depleted, and homeostasis of the suture mesenchyme was altered with exposure. Thus, although these pharmacological exposures can deplete calvarial stem cell populations leading to craniosynostosis, depletion of stem cells is not a unifying mechanism for pharmacological exposure associated craniosynostosis.
Collapse
|
10
|
Durham E, Howie RN, Parsons T, Bennfors G, Black L, Weinberg SM, Elsalanty M, Yu JC, Cray JJ. Thyroxine Exposure Effects on the Cranial Base. Calcif Tissue Int 2017; 101:300-311. [PMID: 28391432 PMCID: PMC5545063 DOI: 10.1007/s00223-017-0278-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/03/2017] [Indexed: 01/19/2023]
Abstract
Thyroid hormone is important for skull bone growth, which primarily occurs at the cranial sutures and synchondroses. Thyroid hormones regulate metabolism and act in all stages of cartilage and bone development and maintenance by interacting with growth hormone and regulating insulin-like growth factor. Aberrant thyroid hormone levels and exposure during development are exogenous factors that may exacerbate susceptibility to craniofacial abnormalities potentially through changes in growth at the synchondroses of the cranial base. To elucidate the direct effect of in utero therapeutic thyroxine exposure on the synchondroses in developing mice, we provided scaled doses of the thyroid replacement drug, levothyroxine, in drinking water to pregnant C57BL6 wild-type dams. The skulls of resulting pups were subjected to micro-computed tomography analysis revealing less bone volume relative to tissue volume in the synchondroses of mouse pups exposed in utero to levothyroxine. Histological assessment of the cranial base area indicated more active synchondroses as measured by metabolic factors including Igf1. The cranial base of the pups exposed to high levels of levothyroxine also contained more collagen fiber matrix and an increase in markers of bone formation. Such changes due to exposure to exogenous thyroid hormone may drive overall morphological changes. Thus, excess thyroid hormone exposure to the fetus during pregnancy may lead to altered craniofacial growth and increased risk of anomalies in offspring.
Collapse
Affiliation(s)
- Emily Durham
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA
| | - Trish Parsons
- Department of Oral Biology, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Grace Bennfors
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA
| | - Seth M Weinberg
- Department of Oral Biology, School of Dental Medicine, Center for Craniofacial and Dental Genetics, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Mohammed Elsalanty
- Departments of Oral Biology, Cellular Biology and Anatomy, Orthopaedic Surgery and Oral and Maxillofacial Surgery, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Institute for Regenerative and Reparative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jack C Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Division of Plastic Surgery, Department of Surgery, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, BS 230B, Charleston, SC, 29425, USA.
| |
Collapse
|
11
|
Effects of In Utero Thyroxine Exposure on Murine Cranial Suture Growth. PLoS One 2016; 11:e0167805. [PMID: 27959899 PMCID: PMC5154521 DOI: 10.1371/journal.pone.0167805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
Large scale surveillance studies, case studies, as well as cohort studies have identified the influence of thyroid hormones on calvarial growth and development. Surveillance data suggests maternal thyroid disorders (hyperthyroidism, hypothyroidism with pharmacological replacement, and Maternal Graves Disease) are linked to as much as a 2.5 fold increased risk for craniosynostosis. Craniosynostosis is the premature fusion of one or more calvarial growth sites (sutures) prior to the completion of brain expansion. Thyroid hormones maintain proper bone mineral densities by interacting with growth hormone and aiding in the regulation of insulin like growth factors (IGFs). Disruption of this hormonal control of bone physiology may lead to altered bone dynamics thereby increasing the risk for craniosynostosis. In order to elucidate the effect of exogenous thyroxine exposure on cranial suture growth and morphology, wild type C57BL6 mouse litters were exposed to thyroxine in utero (control = no treatment; low ~167 ng per day; high ~667 ng per day). Thyroxine exposed mice demonstrated craniofacial dysmorphology (brachycranic). High dose exposed mice showed diminished area of the coronal and widening of the sagittal sutures indicative of premature fusion and compensatory growth. Presence of thyroid receptors was confirmed for the murine cranial suture and markers of proliferation and osteogenesis were increased in sutures from exposed mice. Increased Htra1 and Igf1 gene expression were found in sutures from high dose exposed individuals. Pathways related to the HTRA1/IGF axis, specifically Akt and Wnt, demonstrated evidence of increased activity. Overall our data suggest that maternal exogenous thyroxine exposure can drive calvarial growth alterations and altered suture morphology.
Collapse
|
12
|
Durham EL, Howie RN, Black L, Bennfors G, Parsons TE, Elsalanty M, Yu JC, Weinberg SM, Cray JJ. Effects of thyroxine exposure on the Twist 1 +/- phenotype: A test of gene-environment interaction modeling for craniosynostosis. ACTA ACUST UNITED AC 2016; 106:803-813. [PMID: 27435288 DOI: 10.1002/bdra.23543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniosynostosis, the premature fusion of one or more of the cranial sutures, is estimated to occur in 1:1800 to 2500 births. Genetic murine models of craniosynostosis exist, but often imperfectly model human patients. Case, cohort, and surveillance studies have identified excess thyroid hormone as an agent that can either cause or exacerbate human cases of craniosynostosis. METHODS Here we investigate the influence of in utero and in vitro exogenous thyroid hormone exposure on a murine model of craniosynostosis, Twist 1 +/-. RESULTS By 15 days post-natal, there was evidence of coronal suture fusion in the Twist 1 +/- model, regardless of exposure. With the exception of craniofacial width, there were no significant effects of exposure; however, the Twist 1 +/- phenotype was significantly different from the wild-type control. Twist 1 +/- cranial suture cells did not respond to thyroxine treatment as measured by proliferation, osteogenic differentiation, and gene expression of osteogenic markers. However, treatment of these cells did result in modulation of thyroid associated gene expression. CONCLUSION Our findings suggest the phenotypic effects of the genetic mutation largely outweighed the effects of thyroxine exposure in the Twist 1 +/- model. These results highlight difficultly in experimentally modeling gene-environment interactions for craniosynostotic phenotypes. Birth Defects Research (Part A) 106:803-813, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Grace Bennfors
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mohammed Elsalanty
- Departments of Oral Biology, Cellular Biology and Anatomy, Orthopaedic Surgery and Oral and Maxillofacial Surgery, Augusta University, Augusta, Georgia.,Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia
| | - Jack C Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia.,Department of Surgery, Division of Plastic Surgery, Augusta University, Augusta, Georgia
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|