1
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
2
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
3
|
De Luca D, Autilio C. Strategies to protect surfactant and enhance its activity. Biomed J 2021; 44:654-662. [PMID: 34365021 PMCID: PMC8847817 DOI: 10.1016/j.bj.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
The knowledge about surfactant biology is now deeper and recent research has allowed to clarify its role in several human lung disorders. The balance between surfactant production and consumption is better known and the same applies to their regulatory mechanisms. This has allowed to hypothesize and investigate several new and original strategies to protect surfactant and enhance its activity. These interventions are potentially useful for several disorders and particularly for acute respiratory distress syndrome. We here highlight the mechanisms regulating surfactant consumption, encompassing surfactant catabolism but also surfactant injury due to other mechanisms, in a physiopathology-driven fashion. We then analyze each corresponding strategy to protect surfactant and enhance its activity. Some of these strategies are more advanced in terms of research & development pathway, some others are still investigational, but all are promising and deserve a joint effort from clinical-academic researchers and the industry.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Paediatrics and Neonatal Critical Care, "A.Béclère" Medical Centre, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France.
| | - Chiara Autilio
- Dpt. of Biochemistry and Molecular Biology and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| |
Collapse
|
4
|
Piersigilli F, Van Grambezen B, Hocq C, Danhaive O. Nutrients and Microbiota in Lung Diseases of Prematurity: The Placenta-Gut-Lung Triangle. Nutrients 2020; 12:E469. [PMID: 32069822 PMCID: PMC7071142 DOI: 10.3390/nu12020469] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiorespiratory function is not only the foremost determinant of life after premature birth, but also a major factor of long-term outcomes. However, the path from placental disconnection to nutritional autonomy is enduring and challenging for the preterm infant and, at each step, will have profound influences on respiratory physiology and disease. Fluid and energy intake, specific nutrients such as amino-acids, lipids and vitamins, and their ways of administration -parenteral or enteral-have direct implications on lung tissue composition and cellular functions, thus affect lung development and homeostasis and contributing to acute and chronic respiratory disorders. In addition, metabolomic signatures have recently emerged as biomarkers of bronchopulmonary dysplasia and other neonatal diseases, suggesting a profound implication of specific metabolites such as amino-acids, acylcarnitine and fatty acids in lung injury and repair, inflammation and immune modulation. Recent advances have highlighted the profound influence of the microbiome on many short- and long-term outcomes in the preterm infant. Lung and intestinal microbiomes are deeply intricated, and nutrition plays a prominent role in their establishment and regulation. There is an emerging evidence that human milk prevents bronchopulmonary dysplasia in premature infants, potentially through microbiome composition and/or inflammation modulation. Restoring antibiotic therapy-mediated microbiome disruption is another potentially beneficial action of human milk, which can be in part emulated by pre- and probiotics and supplements. This review will explore the many facets of the gut-lung axis and its pathophysiology in acute and chronic respiratory disorders of the prematurely born infant, and explore established and innovative nutritional approaches for prevention and treatment.
Collapse
Affiliation(s)
- Fiammetta Piersigilli
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels 1200, Belgium; (F.P.); (B.V.G.); (C.H.)
| | - Bénédicte Van Grambezen
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels 1200, Belgium; (F.P.); (B.V.G.); (C.H.)
| | - Catheline Hocq
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels 1200, Belgium; (F.P.); (B.V.G.); (C.H.)
| | - Olivier Danhaive
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels 1200, Belgium; (F.P.); (B.V.G.); (C.H.)
- Department of Pediatrics, Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Curstedt T, Halliday HL, Hallman M, Saugstad OD, Speer CP. Sharing Progress in Neonatology (SPIN): A Critical Appraisal of Our Current Knowledge. Neonatology 2019; 115:380-383. [PMID: 30974441 DOI: 10.1159/000499359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Reiterer F, Schwaberger B, Freidl T, Schmölzer G, Pichler G, Urlesberger B. Lung-protective ventilatory strategies in intubated preterm neonates with RDS. Paediatr Respir Rev 2017; 23:89-96. [PMID: 27876355 DOI: 10.1016/j.prrv.2016.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
Abstract
This article provides a narrative review of lung-protective ventilatory strategies (LPVS) in intubated preterm infants with RDS. A description of strategies is followed by results on short-and long-term respiratory and neurodevelopmental outcomes. Strategies will include patient-triggered or synchronized ventilation, volume targeted ventilation, the technique of intubation, surfactant administration and rapid extubation to NCPAP (INSURE), the open lung concept, strategies of high-frequency ventilation, and permissive hypercapnia. Based on this review single recommendations on optimal LPVS cannot be made. Combinations of several strategies, individually applied, most probably minimize or avoid potential serious respiratory and cerebral complications like bronchopulmonary dysplasia and cerebral palsy.
Collapse
Affiliation(s)
- F Reiterer
- Division of Neonatology, Department of Pediatrics and Adolescence Medicine, Medical University Graz, Austria.
| | - B Schwaberger
- Division of Neonatology, Department of Pediatrics and Adolescence Medicine, Medical University Graz, Austria
| | - T Freidl
- Division of Neonatology, Department of Pediatrics and Adolescence Medicine, Medical University Graz, Austria
| | - G Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - G Pichler
- Division of Neonatology, Department of Pediatrics and Adolescence Medicine, Medical University Graz, Austria
| | - B Urlesberger
- Division of Neonatology, Department of Pediatrics and Adolescence Medicine, Medical University Graz, Austria
| |
Collapse
|
7
|
Buonocore G, Curstedt T, Halliday HL, Hallman M, Saugstad OD, Speer CP. Sharing Progress in Neonatal (SPIN) Lung and Brain. Neonatology 2016; 109:322-4. [PMID: 27251786 DOI: 10.1159/000444907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|