1
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Proskuryakova AA, Ivanova ES, Makunin AI, Larkin DM, Ferguson-Smith MA, Yang F, Uphyrkina OV, Perelman PL, Graphodatsky AS. Comparative studies of X chromosomes in Cervidae family. Sci Rep 2023; 13:11992. [PMID: 37491593 PMCID: PMC10368622 DOI: 10.1038/s41598-023-39088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
The family Cervidae is the second most diverse in the infraorder Pecora and is characterized by variability in the diploid chromosome numbers among species. X chromosomes in Cervidae evolved through complex chromosomal rearrangements of conserved segments within the chromosome, changes in centromere position, heterochromatic variation, and X-autosomal translocations. The family Cervidae consists of two subfamilies: Cervinae and Capreolinae. Here we build a detailed X chromosome map with 29 cattle bacterial artificial chromosomes of representatives of both subfamilies: reindeer (Rangifer tarandus), gray brocket deer (Mazama gouazoubira), Chinese water deer (Hydropotes inermis) (Capreolinae); black muntjac (Muntiacus crinifrons), tufted deer (Elaphodus cephalophus), sika deer (Cervus nippon) and red deer (Cervus elaphus) (Cervinae). To track chromosomal rearrangements during Cervidae evolution, we summarized new data, and compared them with available X chromosomal maps and chromosome level assemblies of other species. We demonstrate the types of rearrangements that may have underlined the variability of Cervidae X chromosomes. We detected two types of cervine X chromosome-acrocentric and submetacentric. The acrocentric type is found in three independent deer lineages (subfamily Cervinae and in two Capreolinae tribes-Odocoileini and Capreolini). We show that chromosomal rearrangements on the X-chromosome in Cervidae occur at a higher frequency than in the entire Ruminantia lineage: the rate of rearrangements is 2 per 10 million years.
Collapse
Affiliation(s)
- Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090.
| | - Ekaterina S Ivanova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, Russia, 630090
| | - Alexey I Makunin
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| | - Denis M Larkin
- The Royal Veterinary College, Royal College Street, University of London, London, NW1 0TU, UK
| | - Malcolm A Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Center for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Olga V Uphyrkina
- Federal Research Center for Biodiversity of the Terrestrial Biota of East Asia, Vladivostok, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| |
Collapse
|
3
|
Li S, Zhao G, Han H, Li Y, Li J, Wang J, Cao G, Li X. Genome collinearity analysis illuminates the evolution of donkey chromosome 1 and horse chromosome 5 in perissodactyls: A comparative study. BMC Genomics 2021; 22:665. [PMID: 34521340 PMCID: PMC8442440 DOI: 10.1186/s12864-021-07984-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is important to resolve the evolutionary history of species genomes as it has affected both genome organization and chromosomal architecture. The rapid innovation in sequencing technologies and the improvement in assembly algorithms have enabled the creation of highly contiguous genomes. DNA Zoo, a global organization dedicated to animal conservation, offers more than 150 chromosome-length genome assemblies. This database has great potential in the comparative genomics field. RESULTS Using the donkey (Equus asinus asinus, EAS) genome provided by DNA Zoo as an example, the scaffold N50 length and Benchmarking Universal Single-Copy Ortholog score reached 95.5 Mb and 91.6%, respectively. We identified the cytogenetic nomenclature, corrected the direction of the chromosome-length sequence of the donkey genome, analyzed the genome-wide chromosomal rearrangements between the donkey and horse, and illustrated the evolution of the donkey chromosome 1 and horse chromosome 5 in perissodactyls. CONCLUSIONS The donkey genome provided by DNA Zoo has relatively good continuity and integrity. Sequence-based comparative genomic analyses are useful for chromosome evolution research. Several previously published chromosome painting results can be used to identify the cytogenetic nomenclature and correct the direction of the chromosome-length sequence of new assemblies. Compared with the horse genome, the donkey chromosomes 1, 4, 20, and X have several obvious inversions, consistent with the results of previous studies. A 4.8 Mb inverted structure was first discovered in the donkey chromosome 25 and plains zebra chromosome 11. We speculate that the inverted structure and the tandem fusion of horse chromosome 31 and 4 are common features of non-caballine equids, which supports the correctness of the existing Equus phylogeny to an extent.
Collapse
Affiliation(s)
- Shaohua Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Gaoping Zhao
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Hongmei Han
- Department of Physical Education, Hohhot Minzu College, Hohhot, 010051, China
| | - Yunxia Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Jun Li
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China
| | - Jinfeng Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guifang Cao
- College of Veterinary Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China.
| |
Collapse
|
4
|
Karyotype Evolution in 10 Pinniped Species: Variability of Heterochromatin versus High Conservatism of Euchromatin as Revealed by Comparative Molecular Cytogenetics. Genes (Basel) 2020; 11:genes11121485. [PMID: 33321928 PMCID: PMC7763226 DOI: 10.3390/genes11121485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
Pinnipedia karyotype evolution was studied here using human, domestic dog, and stone marten whole-chromosome painting probes to obtain comparative chromosome maps among species of Odobenidae (Odobenus rosmarus), Phocidae (Phoca vitulina, Phoca largha, Phoca hispida, Pusa sibirica, Erignathus barbatus), and Otariidae (Eumetopias jubatus, Callorhinus ursinus, Phocarctos hookeri, and Arctocephalus forsteri). Structural and functional chromosomal features were assessed with telomere repeat and ribosomal-DNA probes and by CBG (C-bands revealed by barium hydroxide treatment followed by Giemsa staining) and CDAG (Chromomycin A3-DAPI after G-banding) methods. We demonstrated diversity of heterochromatin among pinniped karyotypes in terms of localization, size, and nucleotide composition. For the first time, an intrachromosomal rearrangement common for Otariidae and Odobenidae was revealed. We postulate that the order of evolutionarily conserved segments in the analyzed pinnipeds is the same as the order proposed for the ancestral Carnivora karyotype (2n = 38). The evolution of conserved genomes of pinnipeds has been accompanied by few fusion events (less than one rearrangement per 10 million years) and by novel intrachromosomal changes including the emergence of new centromeres and pericentric inversion/centromere repositioning. The observed interspecific diversity of pinniped karyotypes driven by constitutive heterochromatin variation likely has played an important role in karyotype evolution of pinnipeds, thereby contributing to the differences of pinnipeds’ chromosome sets.
Collapse
|
5
|
Brookwell R, Finlayson K, van de Merwe JP. The Karyotype of Blainville's Beaked Whale, Mesoplodon densirostris. Cytogenet Genome Res 2020; 160:698-703. [PMID: 33207347 DOI: 10.1159/000511730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
The karyotype of the Odontocete whale, Mesoplodon densirostris, has not been previously reported. The chromosome number is determined to be 2n = 42, and the karyotype is presented using G-, C-, and nucleolar organizer region (NOR) banding. The findings include NOR regions on 2 chromosomes, regions of heterochromatic variation, a large block of heterochromatin on the X chromosome, and a relatively large Y chromosome. The karyotype is compared to published karyograms of 2 other species of Mesoplodon.
Collapse
Affiliation(s)
- Ross Brookwell
- Cytogenetics Department, Sullivan Nicolaides Pathology, Bowen Hills, Queensland, Australia,
| | - Kimberly Finlayson
- Australian Rivers Institute, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University Gold Coast, Southport, Queensland, Australia
| |
Collapse
|
6
|
Comparative Chromosome Mapping of Musk Ox and the X Chromosome among Some Bovidae Species. Genes (Basel) 2019; 10:genes10110857. [PMID: 31671864 PMCID: PMC6896007 DOI: 10.3390/genes10110857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
: Bovidae, the largest family in Pecora infraorder, are characterized by a striking variability in diploid number of chromosomes between species and among individuals within a species. The bovid X chromosome is also remarkably variable, with several morphological types in the family. Here we built a detailed chromosome map of musk ox (Ovibos moschatus), a relic species originating from Pleistocene megafauna, with dromedary and human probes using chromosome painting. We trace chromosomal rearrangements during Bovidae evolution by comparing species already studied by chromosome painting. The musk ox karyotype differs from the ancestral pecoran karyotype by six fusions, one fission, and three inversions. We discuss changes in pecoran ancestral karyotype in the light of new painting data. Variations in the X chromosome structure of four bovid species nilgai bull (Boselaphus tragocamelus), saola (Pseudoryx nghetinhensis), gaur (Bos gaurus), and Kirk's Dikdik (Madoqua kirkii) were further analyzed using 26 cattle BAC-clones. We found the duplication on the X in saola. We show main rearrangements leading to the formation of four types of bovid X: Bovinae type with derived cattle subtype formed by centromere reposition and Antilopinae type with Caprini subtype formed by inversion in XSB3.
Collapse
|
7
|
Lemskaya NA, Kulemzina AI, Beklemisheva VR, Biltueva LS, Proskuryakova AA, Hallenbeck JM, Perelman PL, Graphodatsky AS. A combined banding method that allows the reliable identification of chromosomes as well as differentiation of AT- and GC-rich heterochromatin. Chromosome Res 2018; 26:307-315. [PMID: 30443803 DOI: 10.1007/s10577-018-9589-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Сonstitutive heterochromatin areas are revealed by differential staining as C-positive chromosomal regions. These C-positive bands may greatly vary by location, size, and nucleotide composition. CBG-banding is the most commonly used method to detect structural heterochromatin in animals. The difficulty in identification of individual chromosomes represents an unresolved problem of this method as the body of the chromosome is stained uniformly and does not have banding pattern beyond C-bands. Here, we present the method that we called CDAG for sequential heterochromatin staining after differential GTG-banding. The method uses G-banding followed by heat denaturation in the presence of formamide with consecutive fluorochrome staining. The new technique is valid for the concurrent revealing of heterochromatin position due to differential banding of chromosomes and heterochromatin composition (AT-/GC-rich) in animal karyotyping.
Collapse
Affiliation(s)
- Natalya A Lemskaya
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.
| | | | | | - Larisa S Biltueva
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
8
|
The Case of X and Y Localization of Nucleolus Organizer Regions (NORs) in Tragulus javanicus (Cetartiodactyla, Mammalia). Genes (Basel) 2018; 9:genes9060312. [PMID: 29925822 PMCID: PMC6027365 DOI: 10.3390/genes9060312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022] Open
Abstract
There are differences in number and localization of nucleolus organizer regions (NORs) in genomes. In mammalian genomes, NORs are located on autosomes, which are often situated on short arms of acrocentric chromosomes and more rarely in telomeric, pericentromeric, or interstitial regions. In this work, we report the unique case of active NORs located on gonоsomes of a eutherian mammal, the Javan mouse-deer (Tragulus javanicus). We have investigated the position of NORs by FISH experiments with ribosomal DNA (rDNA) sequences (18S, 5.8S, and 28S) and show the presence of a single NOR site on the X and Y chromosomes. The NOR is localized interstitially on the p-arm of the X chromosome in close proximity with prominent C-positive heterochromatin blocks and in the pericentromeric area of mostly heterochromatic Y. The NOR sites are active on both the X and Y chromosomes in the studied individual and surrounded by GC enriched heterochromatin. We hypothesize that the surrounding heterochromatin might have played a role in the transfer of NORs from autosomes to sex chromosomes during the karyotype evolution of the Javan mouse-deer.
Collapse
|
9
|
Moskalev AА, Kudryavtseva AV, Graphodatsky AS, Beklemisheva VR, Serdyukova NA, Krutovsky KV, Sharov VV, Kulakovskiy IV, Lando AS, Kasianov AS, Kuzmin DA, Putintseva YA, Feranchuk SI, Shaposhnikov MV, Fraifeld VE, Toren D, Snezhkina AV, Sitnik VV. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus. BMC Evol Biol 2017; 17:258. [PMID: 29297306 PMCID: PMC5751776 DOI: 10.1186/s12862-017-1103-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a “living fossil”. It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. Results In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. Conclusions This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions. Electronic supplementary material The online version of this article (doi: 10.1186/s12862-017-1103-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey А Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation. .,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russian Federation.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Novosibirsk, 630090, Russian Federation
| | | | - Natalya A Serdyukova
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russian Federation
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, 37077, Germany.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation.,Department of Ecosystem Science and Management, Texas A&M University, College Station, 77843-2138, TX, USA
| | - Vadim V Sharov
- Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation.,Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russian Federation
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Andrey S Lando
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Dmitry A Kuzmin
- Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation.,Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russian Federation
| | - Yuliya A Putintseva
- Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation
| | - Sergey I Feranchuk
- Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation.,Irkutsk National Research Technical University, Irkutsk, 664074, Russian Federation.,Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, 664033, Russian Federation
| | - Mikhail V Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russian Federation
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Dmitri Toren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Anastasia V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Vasily V Sitnik
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| |
Collapse
|
10
|
Proskuryakova AA, Kulemzina AI, Perelman PL, Makunin AI, Larkin DM, Farré M, Kukekova AV, Lynn Johnson J, Lemskaya NA, Beklemisheva VR, Roelke-Parker ME, Bellizzi J, Ryder OA, O'Brien SJ, Graphodatsky AS. X Chromosome Evolution in Cetartiodactyla. Genes (Basel) 2017; 8:genes8090216. [PMID: 28858207 PMCID: PMC5615350 DOI: 10.3390/genes8090216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 02/05/2023] Open
Abstract
The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David's deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.
Collapse
Affiliation(s)
- Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| | - Anastasia I Kulemzina
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| | - Alexey I Makunin
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Denis M Larkin
- The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Marta Farré
- The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Anna V Kukekova
- Animal Sciences Department, College of ACES, University of Illinois at Urbana-Champaign, IL 61801, USA.
| | - Jennifer Lynn Johnson
- Animal Sciences Department, College of ACES, University of Illinois at Urbana-Champaign, IL 61801, USA.
| | - Natalya A Lemskaya
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Violetta R Beklemisheva
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
| | - Melody E Roelke-Parker
- Frederick National Laboratory of Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA.
| | - June Bellizzi
- Catoctin Zoo and Wildlife Preserve, Thurmont, MD 21788, USA.
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, USA.
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Sredniy Av. 41A, Saint-Petersburg 199034, Russia.
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale 3301 College Ave, Fort Lauderdale, FL 33314, USA.
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave. 8/2, Novosibirsk 630090, Russia.
- Synthetic Biology Unit, Novosibirsk State University, Pirogova Str. 1, Novosibirsk 630090, Russia.
| |
Collapse
|
11
|
A Comparative Study of Pygmy Hippopotamus (Choeropsis liberiensis) Karyotype by Cross-Species Chromosome Painting. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9358-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|