1
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
3
|
Gu S, He Z, Xu Q, Dong J, Xiao T, Liang F, Ma X, Wang F, Huang JH. The Relationship Between 5-Hydroxytryptamine and Its Metabolite Changes With Post-stroke Depression. Front Psychiatry 2022; 13:871754. [PMID: 35558423 PMCID: PMC9086784 DOI: 10.3389/fpsyt.2022.871754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Post-stroke depression (PSD) is the most common and serious sequelae of stroke. Approximately 33% of stroke survivors were affected by PSD. However, many issues (e.g., incidence, diagnostic marker, and risk factor) related to PSD remained unclear. The "monoamine hypothesis" is a significant hypothesis for depression, which suggests that three monoamines play a key role in depression. Therefore, most current antidepressants are developed to modulate the monoamines on PSD treatment, and these antidepressants have good effects on patients with PSD. However, the potential mechanisms of three monoamines in PSD are still unclear. Previously, we proposed "three primary emotions," which suggested a new model of basic emotions based on the three monoamines. It may provide a new way for PSD treatment. In addition, recent studies have found that monoamine-related emotional intervention also showed potential effects in the treatment and prevention of PSD. This study discusses these issues and attempts to provide a prospect for future research on PSD.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China.,Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Zhengming He
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Qiuyue Xu
- Department of Nurse, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Tingwei Xiao
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Fei Liang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Xianjun Ma
- Section of Brain Diseases, Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| |
Collapse
|
4
|
Ibarguen-Vargas Y, Leman S, Palme R, Belzung C, Surget A. CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics 2021; 13:pharmaceutics13122114. [PMID: 34959395 PMCID: PMC8707167 DOI: 10.3390/pharmaceutics13122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Despite promising initial reports, corticotropin-releasing factor receptor type-1 (CRF-R1) antagonists have mostly failed to display efficacy in clinical trials for anxiety or depression. Rather than broad-spectrum antidepressant/anxiolytic-like drugs, they may represent an ‘antistress’ solution for single stressful situations or for patients with chronic stress conditions. However, the impact of prolonged CRF-R1 antagonist treatments on the hypothalamic–pituitary–adrenal (HPA) axis under chronic stress conditions remained to be characterized. Hence, our study investigated whether a chronic CRF-R1 antagonist (crinecerfont, formerly known as SSR125543, 20 mg·kg−1·day−1 ip, 5 weeks) would alter HPA axis basal circadian activity and negative feedback sensitivity in mice exposed to either control or chronic stress conditions (unpredictable chronic mild stress, UCMS, 7 weeks), through measures of fecal corticosterone metabolites, plasma corticosterone, and dexamethasone suppression test. Despite preserving HPA axis parameters in control non-stressed mice, the 5-week crinercerfont treatment improved the negative feedback sensitivity in chronically stressed mice, but paradoxically exacerbated their basal corticosterone secretion nearly all along the circadian cycle. The capacity of chronic CRF-R1 antagonists to improve the HPA negative feedback in UCMS argues in favor of a potential therapeutic benefit against stress-related conditions. However, the treatment-related overactivation of HPA circadian activity in UCMS raise questions about possible physiological outcomes with long-standing treatments under ongoing chronic stress.
Collapse
Affiliation(s)
- Yadira Ibarguen-Vargas
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- EUK-CVL, Université d’Orléans, 45100 Orléans, France
| | - Samuel Leman
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
| | - Rupert Palme
- Department of Biomedical Sciences/Biochemistry, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Catherine Belzung
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- Correspondence: (C.B.); (A.S.); Tel.: +33-2-47366994 (C.B.); +33-2-47367305 (A.S.)
| | - Alexandre Surget
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- Correspondence: (C.B.); (A.S.); Tel.: +33-2-47366994 (C.B.); +33-2-47367305 (A.S.)
| |
Collapse
|
5
|
Pousa PA, Souza RM, Melo PHM, Correa BHM, Mendonça TSC, Simões-e-Silva AC, Miranda DM. Telomere Shortening and Psychiatric Disorders: A Systematic Review. Cells 2021; 10:1423. [PMID: 34200513 PMCID: PMC8227190 DOI: 10.3390/cells10061423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
Telomeres are aging biomarkers, as they shorten while cells undergo mitosis. The aim of this study was to evaluate whether psychiatric disorders marked by psychological distress lead to alterations to telomere length (TL), corroborating the hypothesis that mental disorders might have a deeper impact on our physiology and aging than it was previously thought. A systematic search of the literature using MeSH descriptors of psychological distress ("Traumatic Stress Disorder" or "Anxiety Disorder" or "depression") and telomere length ("cellular senescence", "oxidative stress" and "telomere") was conducted on PubMed, Cochrane Library and ScienceDirect databases. A total of 56 studies (113,699 patients) measured the TL from individuals diagnosed with anxiety, depression and posttraumatic disorders and compared them with those from healthy subjects. Overall, TL negatively associates with distress-related mental disorders. The possible underlying molecular mechanisms that underly psychiatric diseases to telomere shortening include oxidative stress, inflammation and mitochondrial dysfunction linking. It is still unclear whether psychological distress is either a cause or a consequence of telomere shortening.
Collapse
Affiliation(s)
- Pedro A. Pousa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Raquel M. Souza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Paulo Henrique M. Melo
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Bernardo H. M. Correa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Tamires S. C. Mendonça
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Ana Cristina Simões-e-Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 30130-100, Brazil; (P.A.P.); (R.M.S.); (P.H.M.M.); (B.H.M.C.); (T.S.C.M.); (A.C.S.-e.-S.)
| | - Débora M. Miranda
- Department of Pediatrics, Laboratory of Molecular Medicine, UFMG, Belo Horizonte, Minas Gerais 30130-100, Brazil
| |
Collapse
|
6
|
Current methods for stress marker detection in saliva. J Pharm Biomed Anal 2020; 191:113604. [PMID: 32957066 PMCID: PMC7474833 DOI: 10.1016/j.jpba.2020.113604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
Introduction of relevant biomarkers in stress conditions. Reference ranges of biomarkers in normal conditions. Saliva as easy-accessible specimen. Review of analytical methods for biomarker determination in saliva. Possibilities for design of point-of-care devices.
Stress and stress-related diseases are leading to drastic consequences in private and professional life. Therefore, the need for stress prevention strategies is of personal and economic interest. Especially during the recent period related to covid-19 outbreak and lock-down, an ongoing discussion of increasing stress etiology is reported. Biomarker analysis may help to assist diagnosis and classification of stress-related diseases and therefore support therapeutical decisions. Due to its non-invasive sampling, the analysis of saliva has become highly attractive compared to the detection methods in other specimen. This review article summarizes the status of research, innovative approaches, and trends. Scientific literature published since 2011 was excerpted with concentration on the detection of up to seven promising marker substances. Most often reported cortisol represents the currently best evaluated stress marker, while norepinephrine (noradrenaline) or its metabolite 3-methoxy-4-hydroxyphenylglycol is also a quite commonly considered stress marker. Other complementary stress marker candidates are testosterone, dehydroepiandrosterone (DHEA) and its sulfonated analogue DHEA-S, alpha-amylase, secretory immunoglobulin A, and chromogranin A. Several working groups are researching in the field of stress marker detection to develop reliable, fast, and affordable methods. Analytical methods reported mainly focused on immunological and electrochemical as well as chromatographic methods hyphenated to mass spectrometric detection to yield the required detection limits.
Collapse
|
7
|
Caldwell HK, Aulino EA, Rodriguez KM, Witchey SK, Yaw AM. Social Context, Stress, Neuropsychiatric Disorders, and the Vasopressin 1b Receptor. Front Neurosci 2017; 11:567. [PMID: 29085277 PMCID: PMC5650633 DOI: 10.3389/fnins.2017.00567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/27/2017] [Indexed: 01/28/2023] Open
Abstract
The arginine vasopressin 1b receptor (Avpr1b) is involved in the modulation of a variety of behaviors and is an important part of the mammalian hormonal stress axis. The Avpr1b is prominent in hippocampal CA2 pyramidal cells and in the anterior pituitary corticotrophs. Decades of research on this receptor has demonstrated its importance to the modulation of social recognition memory, social forms of aggression, and modulation of the hypothalamic-pituitary-adrenal axis, particularly under conditions of acute stress. Further, work in humans suggests that the Avpr1b may play a role in human neuropsychiatric disorders and its modulation may have therapeutic potential. This paper reviews what is known about the role of the Avpr1b in the context of social behaviors, the stress axis, and human neuropsychiatric disorders. Further, possible mechanisms for how Avpr1b activation within the hippocampus vs. Avpr1b activation within anterior pituitary may interact with one another to affect behavioral output are proposed.
Collapse
Affiliation(s)
- Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences Kent State University, Kent, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Elizabeth A Aulino
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences Kent State University, Kent, OH, United States
| | - Karla M Rodriguez
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Shannah K Witchey
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences Kent State University, Kent, OH, United States
| | - Alexandra M Yaw
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|