1
|
Liu Y, Sun X, Gou Z, Deng Z, Zhang Y, Zhao P, Sun W, Bai Y, Jing Y. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Front Cardiovasc Med 2024; 11:1394889. [PMID: 38895538 PMCID: PMC11183338 DOI: 10.3389/fcvm.2024.1394889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.
Collapse
Affiliation(s)
- YuChen Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - XiaoYun Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen Gou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - ZhenKun Deng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YunRui Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - PingPing Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YuChen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Zhang YS, Chen YQ. Dysfunctional regulatory T cell: May be an obstacle to immunotherapy in cardiovascular diseases. Biomed Pharmacother 2024; 173:116359. [PMID: 38430633 DOI: 10.1016/j.biopha.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Inflammatory responses are linked to cardiovascular diseases (CVDs) in various forms. Tregs, members of CD4+ T cells, play important roles in regulating immune system and suppressing inflammatory response, thus contributing to maintaining immune homeostasis. However, Tregs exert their powerful suppressive function relying on the stable phenotype and function. The stability of Tregs primarily depends on the FOXP3 (Forkhead box P3) expression and epigenetic regulation. Although Tregs are quite stable under physiological conditions, prolonged exposure to inflammatory cues, Tregs may lose suppressive function and require proinflammatory phenotype, namely plastic Tregs or ex-Tregs. There are extensive researches have established the beneficial role of Tregs in CVDs. Nevertheless, the potential risks of dysfunctional Tregs lack deep research. Anti-inflammatory and immunological modulation have been hotspots in the treatment of CVDs. Tregs are appealing because of their crucial role in resolving inflammation and promoting tissue repair. If alleviating inflammatory response through modulating Tregs could be a new therapeutic strategy for CVDs, the next step to consider is how to prevent the formation of dysfunctional Tregs or reverse detrimental Tregs to normal phenotype.
Collapse
Affiliation(s)
- Yu-Sha Zhang
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Ya-Qin Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|
3
|
Circular RNA Expression: Its Potential Regulation and Function in Abdominal Aortic Aneurysms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9934951. [PMID: 34306317 PMCID: PMC8263248 DOI: 10.1155/2021/9934951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
Abdominal aortic aneurysms (AAAs) have posed a great threat to human life, and the necessity of its monitoring and treatment is decided by symptomatology and/or the aneurysm size. Accumulating evidence suggests that circular RNAs (circRNAs) contribute a part to the pathogenesis of AAAs. circRNAs are novel single-stranded RNAs with a closed loop structure and high stability, having become the candidate biomarkers for numerous kinds of human disorders. Besides, circRNAs act as molecular "sponge" in organisms, capable of regulating the transcription level. Here, we characterize that the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. In the present work, studies on the biosynthesis, bibliometrics, and mechanisms of action of circRNAs were aims comprehensively reviewed, the role of circRNAs in the AAA pathogenic mechanism was illustrated, and their potential in diagnosing AAAs was examined. Moreover, the current evidence about the effects of circRNAs on AAA development through modulating endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) was summarized. Through thorough investigation, the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. The results demonstrated that circRNAs had the application potential in the diagnosis and prevention of AAAs in clinical practice. The study of circRNA regulatory pathways would be of great assistance to the etiologic research of AAAs.
Collapse
|
4
|
Abstract
The vasculature not only transports oxygenated blood, metabolites, and waste products but also serves as a conduit for hormonal communication between distant tissues. Therefore, it is important to maintain homeostasis within the vasculature. Recent studies have greatly expanded our understanding of the regulation of vasculature development and vascular-related diseases at the epigenetic level, including by protein posttranslational modifications, DNA methylation, and noncoding RNAs. Integrating epigenetic mechanisms into the pathophysiologic conceptualization of complex and multifactorial vascular-related diseases may provide promising therapeutic approaches. Several reviews have presented detailed discussions of epigenetic mechanisms not including histone methylation in vascular biology. In this review, we primarily discuss histone methylation in vascular development and maturity, and in vascular diseases.
Collapse
|
5
|
Mangum KD, Farber MA. Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin Genet 2020; 97:815-826. [PMID: 31957007 DOI: 10.1111/cge.13705] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/22/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are focal dilations of the aorta that develop from degenerative changes in the media and adventitia of the vessel. Ruptured AAAs have a mortality of up to 85%, thus it is important to identify patients with AAA at increased risk for rupture who would benefit from increased surveillance and/or surgical repair. Although the exact genetic and epigenetic mechanisms regulating AAA formation are not completely understood, Mendelian cases of AAA, which result from pathologic variants in a single gene, have helped provide a basic understanding of AAA pathophysiology. More recently, genome wide associated studies (GWAS) have identified additional variants, termed single nucleotide polymorphisms, in humans that may be associated with AAAs. While some variants may be associated with AAAs and play causal roles in aneurysm pathogenesis, it should be emphasized that the majority of SNPs do not actually cause disease. In addition to GWAS, other studies have uncovered epigenetic causes of disease that regulate expression of genes known to be important in AAA pathogenesis. This review describes many of these genetic and epigenetic contributors of AAAs, which altogether provide a deeper insight into AAA pathogenesis.
Collapse
Affiliation(s)
- Kevin D Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Mark A Farber
- Division of Vascular Surgery, UNC Department of Surgery, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Xia Q, Zhang J, Han Y, Zhang X, Jiang H, Lun Y, Wu X, Gang Q, Liu Z, Böckler D, Duan Z, Xin S. Epigenetic regulation of regulatory T cells in patients with abdominal aortic aneurysm. FEBS Open Bio 2019; 9:1137-1143. [PMID: 31001930 PMCID: PMC6551495 DOI: 10.1002/2211-5463.12643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
Abdominal arterial aneurysm (AAA) shares many features with autoimmune diseases and appears to be a T-cell-mediated process. In addition, certain epigenetic changes, including DNA methylation, are associated with AAA. In this study, we investigated epigenetic modifications in regulatory T cells (Tregs) from AAA patients. We used flow cytometry to sort FOXP3+ CD4+ CD25+ Tregs from the peripheral blood of AAA patients and from healthy controls (HC), and then detected DNA methylation and histone modifications by ELISA. The DNA methylation rate of Tregs was significantly higher in AAA patients than in the HC group (0.159 ± 0.08% vs 0.098 ± 0.03%, P < 0.05), while the acetylation rates of H3 and H3K9 histones were lower in the AAA than in the HC group. We also examined the expression of mRNA encoding enzymes that catalyze making and removing epigenetic modifications by real-time PCR: we found that mRNA levels of DNA methyltransferase (DNMT) 1 and DNMT3A were higher in the AAA than in the HC group, mRNA levels of methyl-CpG-binding domain protein (MBD) 2 and MBD4 were higher in the AAA than in the HC group (MBD2: 6.21 ± 2.57 vs 3.04 ± 1.45; MBD4: 7.76 ± 3.48 vs 4.97 ± 3.10; both P < 0.05), and mRNA levels of histone deacetylase (HDAC) 1 and HDAC5 were significantly up-regulated in the AAA compared with the HC group (HDAC1: 2.17 ± 1.18 vs 1.51 ± 0.99; HDAC5: 1.35 ± 0.49 vs 0.94 ± 0.76; both P < 0.05). Together, our results reveal that rates of DNA methylation and histone modifications of Tregs are significantly altered in AAA patients.
Collapse
Affiliation(s)
- Qian Xia
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Yanshuo Han
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Xiaoyu Zhang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Han Jiang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Yu Lun
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Qingwei Gang
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Zhimin Liu
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University of Heidelberg, Heidelberg, Germany
| | - Zhiquan Duan
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|