1
|
Kameyama S, Niwa T, Kikuchi M, Tanaka M. Medaka Terb1 Mutant Displays Defects of Synaptonemal Complex Formation and Sexual Difference in Gametogenesis. Zoolog Sci 2024; 41:314-322. [PMID: 38809870 DOI: 10.2108/zs230108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/14/2024] [Indexed: 05/31/2024]
Abstract
Formation of the synaptonemal complex (SC) is a prerequisite for proper recombination and chromosomal segregation during meiotic prophase I. One mechanism that ensures SC formation is chromosomal movement, which is driven by the force derived from cytoskeletal motors. Here, we report the phenotype of medaka mutants lacking the telomere repeat binding bouquet formation protein 1 (TERB1), which, in combination with the SUN/KASH protein, mediates chromosomal movement by connecting telomeres and cytoskeletal motors. Mutations in the terb1 gene exhibit defects in SC formation in medaka. Although SC formation was initiated, as seen by the punctate lateral elements and fragmented transverse filaments, it was not completed in the terb1 mutant meiocytes. The mutant phenotype further revealed that the introduction of double strand breaks was independent of synapsis completion. In association with these phenotypes, meiocytes in both the ovaries and testes exhibited an aberrant arrangement of homologous chromosomes. Interestingly, although oogenesis halted at the zygotene-like stage in terb1 mutant, testes continued to produce sperm-like cells with aberrant DNA content. This indicates that the mechanism of meiotic checkpoint is sexually different in medaka, similar to the mammalian checkpoint in which oogenesis proceeds while spermatogenesis is arrested. Moreover, our results suggest that spermatogenesis is mechanistically dissociable from meiosis.
Collapse
Affiliation(s)
- Shiyu Kameyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Taiki Niwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Mariko Kikuchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan,
| |
Collapse
|
2
|
Moreno Acosta OD, Boan AF, Hattori RS, Fernandino JI. Notch pathway is required for protection against heat stress in spermatogonial stem cells in medaka. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:487-500. [PMID: 37126120 DOI: 10.1007/s10695-023-01200-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Gamete production is a fundamental process for reproduction; however, exposure to stress, such as increased environmental temperature, can decrease or even interrupt this process, affecting fertility. Thus, the survival of spermatogonial stem cells (SSCs) is crucial for the recovery of spermatogenesis upon stressful situations. Here, we show that the Notch pathway is implicated in such survival, by protecting the SSCs against thermal stress. First, we corroborated the impairment of spermatogenesis under heat stress in medaka, observing an arrest in metaphase I at 10 days of heat treatment, an increase in the number of spermatocytes, and downregulation of ndrg1b and sycp3. In addition, at 30 days of treatment, an interruption of spermatogenesis was observed with a strong loss of spermatocytes and spermatids. Then, the exposure of adult males to thermal stress condition induced apoptosis mainly in spermatogenic and supporting somatic cells, with the exception of the germinal region, where SSCs are located. Concomitantly, the Notch pathway-related genes were upregulated, including the ligands (dll4, jag1-2) and receptors (notch1a-3). Moreover, during thermal stress presenilin enhancer-2 (pen-2), the catalytic subunit of γ-secretase complex of the Notch pathway was restricted to the germinal region of the medaka testis, observed in somatic cells surrounding type A spermatogonia (SGa). The importance of Notch pathway was further supported by an ex vivo approach, in which the inhibition of this pathway activity induced a loss of SSCs. Overall, this study supports the importance of Notch pathways for the protection of SSCs under chronic thermal stress.
Collapse
Affiliation(s)
- Omar D Moreno Acosta
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina
| | - Agustín F Boan
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina
| | - Ricardo S Hattori
- Salmonid Experimental Station at Campos Do Jordão, UPD-CJ, Sao Paulo Fisheries Institute (APTA/SAA), Campos Do Jordao, Brazil
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina.
| |
Collapse
|
3
|
Adolfi MC, Depincé A, Wen M, Pan Q, Herpin A. Development of Ovaries and Sex Change in Fish: Bringing Potential into Action. Sex Dev 2023; 17:84-98. [PMID: 36878204 DOI: 10.1159/000526008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amaury Herpin
- Fish Physiology and Genomics, INRAE, UR 1037, Rennes, France
| |
Collapse
|
4
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
5
|
Delbes G, Blázquez M, Fernandino JI, Grigorova P, Hales BF, Metcalfe C, Navarro-Martín L, Parent L, Robaire B, Rwigemera A, Van Der Kraak G, Wade M, Marlatt V. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. ENVIRONMENTAL RESEARCH 2022; 204:112040. [PMID: 34509487 DOI: 10.1016/j.envres.2021.112040] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.
Collapse
Affiliation(s)
- G Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada.
| | - M Blázquez
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - J I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | | | - B F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - C Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L Parent
- Université TELUQ, Montréal, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, Canada
| | - V Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
6
|
Sumita R, Nishimura T, Tanaka M. Dynamics of Spermatogenesis and Change in Testicular Morphology under 'Mating' and 'Non-Mating' Conditions in Medaka ( Oryzias latipes). Zoolog Sci 2021; 38:436-443. [PMID: 34664918 DOI: 10.2108/zs210025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
Here, we report that the gross morphology of the testes changes under 'non-mating' or 'mating' conditions in medaka (Oryzias latipes). During these conditions, an efferent duct expands and a histological unit of spermatogenesis, the lobule, increases its number under 'non-mating' conditions. Based on BrdU labeling experiments, lower mitotic activity occurs in gonial cells under 'non-mating' conditions, which is consistent with the reduced number of germ cell cysts. Interestingly, the total number of type A spermatogonia was maintained, regardless of the mating conditions. In addition, the transition from mitosis to meiosis may have been retarded under the 'non-mating' conditions. The minimum time required for germ cells to become sperm, from the onset of commitment to spermatogenesis, was approximately 14 days in vivo. The time was not found to significantly differ between 'non-mating' and 'mating' conditions. The collective data suggest the presence of a mechanism wherein the homeostasis of spermatogenesis is altered in response to the mating conditions.
Collapse
Affiliation(s)
- Ruka Sumita
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Toshiya Nishimura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Minoru Tanaka
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan,
| |
Collapse
|
7
|
Arias Padilla LF, Castañeda-Cortés DC, Rosa IF, Moreno Acosta OD, Hattori RS, Nóbrega RH, Fernandino JI. Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka. eLife 2021; 10:62757. [PMID: 33646121 PMCID: PMC7946426 DOI: 10.7554/elife.62757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
The production of an adequate number of gametes is necessary for normal reproduction, for which the regulation of proliferation from early gonadal development to adulthood is key in both sexes. Cystic proliferation of germline stem cells is an especially important step prior to the beginning of meiosis; however, the molecular regulators of this proliferation remain elusive in vertebrates. Here, we report that ndrg1b is an important regulator of cystic proliferation in medaka. We generated mutants of ndrg1b that led to a disruption of cystic proliferation of germ cells. This loss of cystic proliferation was observed from embryogenic to adult stages, impacting the success of gamete production and reproductive parameters such as spawning and fertilization. Interestingly, the depletion of cystic proliferation also impacted male sexual behavior, with a decrease of mating vigor. These data illustrate why it is also necessary to consider gamete production capacity in order to analyze reproductive behavior.
Collapse
Affiliation(s)
| | - Diana C Castañeda-Cortés
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ivana F Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Omar D Moreno Acosta
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ, Sao Paulo Fisheries Institute (APTA/SAA), Campos do Jordao, Brazil
| | - Ricardo S Hattori
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Rafael H Nóbrega
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
8
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
9
|
Lin F, Tong F, He Q, Xiao S, Liu X, Yang H, Guo Y, Wang Q, Zhao H. In vitro effects of androgen on testicular development by the AR-foxl3-rec8/fbxo47 axis in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2020; 292:113435. [PMID: 32057909 DOI: 10.1016/j.ygcen.2020.113435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
In orange-spotted grouper, androgen can promote the development of testis and spermatogenesis, but the effect of androgen on testis development is unclear. Forkhead box L 3 (Foxl3) is important in the development of fish testis. Rec8 and fbxo47 are involved in meiosis, which impacts spermatogenesis. The present study investigated the plausible role of testis development through the Foxl3 transcriptional regulation of rec8 and fbxo47. The results of tissue distribution showed that rec8 and fbxo47 are highly expressed in gonad. In addition, the highest expression of foxl3, rec8, and fbxo47 was in the testis and intersex compared with the other stages of gonadal development, suggesting that foxl3, rec8, and fbxo47 are important in testis development. In addition, by using dual-luciferase assays, we found that the androgen can increase foxl3 promoter activity and Foxl3 can upregulate rec8 and fbxo47 promoter activity. Furthermore, the addition of β-testosterone significantly increased foxl3, rec8, and fbxo47 promoter activity. Together, these results suggest that foxl3 plays a decisive role in testis development by regulating the expression of rec8 or fbxo47 and imply that AR-foxl3-rec8/fbxo47 affects the testis development pathway.
Collapse
Affiliation(s)
- Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Feng Tong
- South China Agricultural University Hospital, Guangzhou 510642, Guangdong, People's Republic of China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
A review of the potential genes implicated in follicular atresia in teleost fish. Mar Genomics 2020; 50:100704. [DOI: 10.1016/j.margen.2019.100704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/31/2019] [Accepted: 09/03/2019] [Indexed: 11/21/2022]
|
11
|
Wu X, Zhang Y, Xu S, Chang Y, Ye Y, Guo A, Kang Y, Guo H, Xu H, Chen L, Zhao X, Guan G. Loss of Gsdf leads to a dysregulation of Igf2bp3-mediated oocyte development in medaka. Gen Comp Endocrinol 2019; 277:122-129. [PMID: 30951723 DOI: 10.1016/j.ygcen.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Gonadal soma-derived factor (Gsdf) is a unique TGF-β factor essential for both ovarian and testicular development in Hd-rR medaka (Oryzias latipes). However, the downstream genes regulated by Gsdf signaling remain unknown. Using a high-throughput proteomic approach, we identified a significant increase in the expression of the RNA-binding protein Igf2bp3 in gsdf-deficient ovaries. We verified this difference in transcription and protein expression against normal gonads using real-time PCR quantification and Western blotting. The genomic structure of igf2bp3 and the syntenic flanking segments are highly conserved across fish and mammals. igf2bp3 expression was correlated with oocyte development, which is consistent with the expression of the igf2bp3 ortholog Vg1-RBP/Vera in Xenopus. In contrast to the normal ovary, cysts of H3K27me3- and Igf2bp3-positive germ cells were dramatically increased in the one-month-old gsdf-deficient ovary, indicating that the gsdf depletion led to a dysregulation of Igf2bp3-mediated oocyte development. Our results provide novel insights into the Gsdf-Igf2bp3 signaling mechanisms that underlie the fundamental process of gametogenesis; these mechanisms may be well conserved across phyla.
Collapse
Affiliation(s)
- Xiaowen Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yingqing Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Shumei Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yuyang Chang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yang Ye
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Yanjiang Road 107, Guangdong 510120, China
| | - Anning Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yi Kang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Haiyan Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Hongyan Xu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 51-380, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaomiao Zhao
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Yanjiang Road 107, Guangdong 510120, China.
| | - Guijun Guan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Nakamura YT. All Oocytes Attach to the Dorsal Ovarian Epithelium in the Ovary of Medaka, Oryzias latipes. Zoolog Sci 2019; 35:306-313. [PMID: 30079832 DOI: 10.2108/zs170210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the teleost fish medaka, an adult ovary simultaneously contains developing oocytes at all phases of oogenesis during the breeding season. However, it remains unclear where oocytes at each developmental stage are located in the ovary by the time of ovulation. To examine the relationship between the developmental stage of oocytes and their positions in the ovary of vertebrate medaka during oogenesis, the stage of oocyte development was determined from the diameter of the oocytes and the cellular morphological characteristics, such as the germinal vesicle and micropyle at the animal pole and attaching filaments at the vegetal pole, and the positions of developing oocytes in the ovary in all sections were observed. Furthermore, to investigate the characteristics of the dorsal ovarian epithelium to which the oocytes attach themselves, the dorsal and vegetal ovarian epithelia were observed. The dorsal ovarian epithelium invaginated in spots. When all serial sections of the oocytes were observed, all oocytes at stages I-VIII were attached to the dorsal ovarian epithelium, regardless of whether it invaginated or not.
Collapse
Affiliation(s)
- Yoriko T Nakamura
- Department of Science Education, Faculty of Education, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
13
|
Yang Y, Liu Q, Xiao Y, Xu S, Wang X, Yang J, Song Z, You F, Li J. High temperature increases the gsdf expression in masculinization of genetically female Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol 2019; 274:17-25. [PMID: 30594590 DOI: 10.1016/j.ygcen.2018.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/25/2023]
Abstract
In teleosts, sex is plastic and is influenced by environmental factors. Elevated temperatures have masculinizing effects on the phenotypic sex of certain sensitive species. In this study, we reared genetic XX Japanese flounder at a high temperature (27.5 ± 0.5 °C) and obtained a population of sex-reversal XX males (male ratio, 95.24%). We comparatively analyzed the dynamic characteristics of germ cells and gsdf (gonadal soma-derived factor) expression during sexual differentiation for the experimental (27.5 ± 0.5 °C) and control (18 °C ± 0.5 °C) groups. The results revealed that the germ cell proliferation inhibited and gsdf expression up-regulated in the experimental group, and the gsdf mRNA and proteins expressed in somatic cells that had direct contact with germline stem cells (with Nanos 2 protein expression) including spermatogonia and oogonia by ISH (in situ hybridization) and IHC (immunohistochemistry). In addition, we also overexpressed the gsdf in XX flounders, and the germ cell number of XX flounders bearing gsdf gene significantly decreased and sometimes disappeared completely, which was consistent with the results from high-temperature induction. Therefore, based on all the results, we speculated that the high expression of gsdf might inhibit germ cell proliferation during sex differentiation, and eventually cause sex reversal in the high-temperature induced masculinization of XX Japanese flounder.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qinghua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Yongshuang Xiao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Shihong Xu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xueying Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jingkun Yang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai 264200, China
| | - Feng You
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
14
|
Abstract
Germline stem cells are sexually indifferent or flexible even in the mature ovary and testis. Acquiring sex identity consistent with the sex of the body is a critical issue in germline stem cells for producing eggs or sperm. However, the molecular mechanism of the sexual fate decision in germ cells is unclear. Medaka is the first vertebrate in which germline stem cells were found in the mature ovary (Nakamura, Kobayashi, Nishimura, Higashijima, & Tanaka, 2010), and a germ cell autonomous switch gene involved in the sexual fate decision, foxl3, was identified (Nishimura et al., 2015) in vertebrates. Here, the mechanism underlying the sex identity of germ cells is described based on the current understanding of germ cell behavior during the sexual fate decision. The control of foxl3 expression in germ cells and components acting downstream of foxl3 are also described.
Collapse
Affiliation(s)
- Minoru Tanaka
- Division of Biological Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
15
|
Spermatogonial stem cells differentiation and testicular lobules formation in a seasonal breeding teleost: The evidence from the heat-induced masculinization of genetically female Japanese flounder (Paralichthys olivaceus). Theriogenology 2018; 120:68-78. [DOI: 10.1016/j.theriogenology.2018.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/21/2023]
|
16
|
Xu H, Zhu X, Li W, Tang Z, Zhao Y, Wu X. Isolation and in vitro culture of ovarian stem cells in Chinese soft-shell turtle (Pelodiscus sinensis). J Cell Biochem 2018; 119:7667-7677. [PMID: 29923352 DOI: 10.1002/jcb.27114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Gonadal cell lines provide valuable tools for studying gametogenesis, sex differentiation, and manipulating germ cells in reproductive biology. Female germline stem cells have been characterized and isolated from ovaries of mammalian species, including mice and human, but there has been very few studies on female germline stem cells in reptiles. Here, we described an ovarian stem cell-like line isolated and cultured from the Chinese soft-shell turtle (Pelodiscus sinensis), designated as PSO1. The cells showed high alkaline phosphatase activity with a normal diploid karyotype. As shown by reverse transcription-polymerase chain reaction, the cells were positive for the expression of germ cell-specific genes, vasa and dazl, as well as a stem cell marker, nanog, but negative for the expression of the folliculogenesis-specific gene, figla. Likewise, through fluorescent immunostaining analyses, both the Dazl and Vasa proteins were detected abundantly in the cytoplasm of perinuclear region, whereas Nanog and PCNA were dominantly observed in the nuclei in PSO1 cells. Moreover, PSO1 cells transfected with pCS2:h2b-egfp could properly express the fusion protein in the nuclei. Taken together, the findings suggested that the germline stem cells exist in the ovary of juvenile Chinese soft-shell turtle and these cells can be isolated for a long-term in vitro culture under experimental conditions. This study has provided a valuable basis for further investigations on the molecular mechanisms whereby the germline stem cells develop and differentiate into gametes in turtles. Also, it has paved the way for studies on oogenesis in turtles, even in the other reptiles.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wei Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhoukai Tang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yanyan Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xuling Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
17
|
Wang Q, Liu Y, Peng C, Wang X, Xiao L, Wang D, Chen J, Zhang H, Zhao H, Li S, Zhang Y, Lin H. Molecular regulation of sex change induced by methyltestosterone -feeding and methyltestosterone -feeding withdrawal in the protogynous orange-spotted grouper†. Biol Reprod 2017; 97:324-333. [DOI: 10.1093/biolre/iox085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/28/2017] [Indexed: 11/13/2022] Open
|