1
|
Yu BF, Li XQ, Chen XX, Dai CC, He JG, Wei J. Analysis of the Dynamic Expression of the SMAD Family in the Periosteum During Guided Bone Regeneration. J Craniofac Surg 2024:00001665-990000000-01875. [PMID: 39221952 DOI: 10.1097/scs.0000000000010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the dynamic expression of the SMAD family during guided bone regeneration for the reconstruction of cranio-maxillofacial bone defects. METHODS A swine model of guided bone regeneration was established with one side of the rib as the trauma group and the contralateral as control group. Periosteal and regenerative tissue specimens were harvested at 9 time points in the early, middle, and late phases, and were subjected to gene sequencing and tissue staining. Expression data of each SMAD family were extracted for further analysis, in which the correlation of the expression of the respective members within and between groups and at different time points was analyzed. RESULTS The expression of individual members of the SMAD family fluctuates greatly, especially during the first month. The SMAD3 and SMAD4 genes were the most highly expressed. The foldchange value of SMAD6 was the largest and remained above 1.5 throughout the process. The dynamic expression levels of SMAD2, SMAD4, SMAD5, SMAD6, and SMAD9 showed a significant positive correlation in both groups. The expression levels of each gene showed a positive correlation with other SMAD genes. Tissue staining showed that the overall contour of the regenerated bone tissue was basically formed within the first 1 month. CONCLUSION The first month of guided bone regeneration is a critical period for bone regeneration and is an important period for the SMAD family to play a role. The SMAD6 may play an important role in the whole process of guided bone regeneration.
Collapse
Affiliation(s)
- Bao-Fu Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Qing Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Xue Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuan-Chang Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin-Guang He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiao Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Morwood AJ, El-Karim IA, Clarke SA, Lundy FT. The Role of Extracellular Matrix (ECM) Adhesion Motifs in Functionalised Hydrogels. Molecules 2023; 28:4616. [PMID: 37375171 DOI: 10.3390/molecules28124616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
To create functional tissue engineering scaffolds, biomaterials should mimic the native extracellular matrix of the tissue to be regenerated. Simultaneously, the survival and functionality of stem cells should also be enhanced to promote tissue organisation and repair. Hydrogels, but in particular, peptide hydrogels, are an emerging class of biocompatible scaffolds which act as promising self-assembling biomaterials for tissue engineering and regenerative therapies, ranging from articular cartilage regeneration at joint defects, to regenerative spinal cord injury following trauma. To enhance hydrogel biocompatibility, it has become imperative to consider the native microenvironment of the site for regeneration, where the use of functionalised hydrogels with extracellular matrix adhesion motifs has become a novel, emerging theme. In this review, we will introduce hydrogels in the context of tissue engineering, provide insight into the complexity of the extracellular matrix, investigate specific adhesion motifs that have been used to generate functionalised hydrogels and outline their potential applications in a regenerative medicine setting. It is anticipated that by conducting this review, we will provide greater insight into functionalised hydrogels, which may help translate their use towards therapeutic roles.
Collapse
Affiliation(s)
- Anna J Morwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ikhlas A El-Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Susan A Clarke
- Medical Biology Centre, School of Nursing and Midwifery, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
3
|
Vargel İ, Tuncel A, Baysal N, Hartuç-Çevik İ, Korkusuz F. Autologous Adipose-Derived Tissue Stromal Vascular Fraction (AD-tSVF) for Knee Osteoarthritis. Int J Mol Sci 2022; 23:13517. [PMID: 36362308 PMCID: PMC9658499 DOI: 10.3390/ijms232113517] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue contains adult mesenchymal stem cells that may modulate the metabolism when applied to other tissues. Stromal vascular fraction (SVF) can be isolated from adipose tissue mechanically and/or enzymatically. SVF was recently used to decrease the pain and improve the function of knee osteoarthritis (OA) patients. Primary and/or secondary OA causes inflammation and degeneration in joints, and regenerative approaches that may modify the natural course of the disease are limited. SVF may modulate inflammation and initiate regeneration in joint tissues by initiating a paracrine effect. Chemokines released from SVF may slow down degeneration and stimulate regeneration in joints. In this review, we overviewed articular joint cartilage structures and functions, OA, and macro-, micro-, and nano-fat isolation techniques. Mechanic and enzymatic SVF processing techniques were summarized. Clinical outcomes of adipose tissue derived tissue SVF (AD-tSVF) were evaluated. Medical devices that can mechanically isolate AD-tSVF were listed, and publications referring to such devices were summarized. Recent review manuscripts were also systematically evaluated and included. Transferring adipose tissues and cells has its roots in plastic, reconstructive, and aesthetic surgery. Micro- and nano-fat is also transferred to other organs and tissues to stimulate regeneration as it contains regenerative cells. Minimal manipulation of the adipose tissue is recently preferred to isolate the regenerative cells without disrupting them from their natural environment. The number of patients in the follow-up studies are recently increasing. The duration of follow up is also increasing with favorable outcomes from the short- to mid-term. There are however variations for mean age and the severity of knee OA patients between studies. Positive outcomes are related to the higher number of cells in the AD-tSVF. Repetition of injections and concomitant treatments such as combining the AD-tSVF with platelet rich plasma or hyaluronan are not solidified. Good results were obtained when combined with arthroscopic debridement and micro- or nano-fracture techniques for small-sized cartilage defects. The optimum pressure applied to the tissues and cells during filtration and purification of the AD-tSVF is not specified yet. Quantitative monitoring of articular joint cartilage regeneration by ultrasound, MR, and synovial fluid analysis as well as with second-look arthroscopy could improve our current knowledge on AD-tSVF treatment in knee OA. AD-tSVF isolation techniques and technologies have the potential to improve knee OA treatment. The duration of centrifugation, filtration, washing, and purification should however be standardized. Using gravity-only for isolation and filtration could be a reasonable approach to avoid possible complications of other methodologies.
Collapse
Affiliation(s)
- İbrahim Vargel
- Department of Plastic Reconstructive and Aesthetic Surgery, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Ali Tuncel
- Department of Chemical Engineering, Engineering Faculty, Hacettepe University, Universiteler Mahallesi, Hacettepe Beytepe Campus #31, Çankaya, Ankara 06800, Turkey
| | - Nilsu Baysal
- Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - İrem Hartuç-Çevik
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| |
Collapse
|
4
|
Comparative Transcriptome Analysis of Human Adipose-Derived Stem Cells Undergoing Osteogenesis in 2D and 3D Culture Conditions. Int J Mol Sci 2021; 22:ijms22157939. [PMID: 34360705 PMCID: PMC8347556 DOI: 10.3390/ijms22157939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) are types of mesenchymal stem cells (MSCs) that have been used as tissue engineering models for bone, cartilage, muscle, marrow stroma, tendon, fat and other connective tissues. Tissue regeneration materials composed of hADSCs have the potential to play an important role in reconstituting damaged tissue or diseased mesenchymal tissue. In this study, we assessed and investigated the osteogenesis of hADSCs in both two-dimensional (2D) and three-dimensional (3D) culture conditions. We confirmed that the hADSCs successfully differentiated into bone tissues by ARS staining and quantitative RT–PCR. To gain insight into the detailed biological difference between the two culture conditions, we profiled the overall gene expression by analyzing the whole transcriptome sequencing data using various bioinformatic methods. We profiled the overall gene expression through RNA-Seq and further analyzed this using various bioinformatic methods. During differential gene expression testing, significant differences in the gene expressions between hADSCs cultured in 2D and 3D conditions were observed. The genes related to skeletal development, bone development and bone remodeling processes were overexpressed in the 3D culture condition as compared to the 2D culture condition. In summary, our RNA-Seq-based study proves effective in providing new insights that contribute toward achieving a genome-wide understanding of gene regulation in mesenchymal stem cell osteogenic differentiation and bone tissue regeneration within the 3D culture system.
Collapse
|
5
|
Guastaferro M, Reverchon E, Baldino L. Polysaccharide-Based Aerogel Production for Biomedical Applications: A Comparative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1631. [PMID: 33810582 PMCID: PMC8037187 DOI: 10.3390/ma14071631] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
A comparative analysis concerning bio-based gels production, to be used for tissue regeneration, has been performed in this review. These gels are generally applied as scaffolds in the biomedical field, thanks to their morphology, low cytotoxicity, and high biocompatibility. Focusing on the time interval 2015-2020, the production of 3D scaffolds of alginate, chitosan and agarose, for skin and bone regeneration, has mainly been investigated. Traditional techniques are critically reviewed to understand their limitations and how supercritical CO2-assisted processes could overcome these drawbacks. In particular, even if freeze-drying represents the most widespread drying technique used to produce polysaccharide-based cryogels, supercritical CO2-assisted drying effectively allows preservation of the nanoporous aerogel structure and removes the organic solvent used for gel preparation. These characteristics are essential for cell adhesion and proliferation.
Collapse
Affiliation(s)
| | | | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (M.G.); (E.R.)
| |
Collapse
|
6
|
Tan B, Tang Q, Zhong Y, Wei Y, He L, Wu Y, Wu J, Liao J. Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration. Int J Oral Sci 2021; 13:9. [PMID: 33727527 PMCID: PMC7966790 DOI: 10.1038/s41368-021-00113-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/13/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Issues caused by maxillofacial tumours involve not only dealing with tumours but also repairing jaw bone defects. In traditional tumour therapy, the systemic toxicity of chemotherapeutic drugs, invasive surgical resection, intractable tumour recurrence, and metastasis are major threats to the patients' lives in the clinic. Fortunately, biomaterial-based intervention can improve the efficiency of tumour treatment and decrease the possibility of recurrence and metastasis, suggesting new promising antitumour therapies. In addition, maxillofacial bone tissue defects caused by tumours and their treatment can negatively affect the physiological and psychological health of patients, and investment in treatment can result in a multitude of burdens to society. Biomaterials are promising options because they have good biocompatibility and bioactive properties for stimulation of bone regeneration. More interestingly, an integrated material regimen that combines tumour therapy with bone repair is a promising treatment option. Herein, we summarized traditional and biomaterial-mediated maxillofacial tumour treatments and analysed biomaterials for bone defect repair. Furthermore, we proposed a promising and superior design of dual-functional biomaterials for simultaneous tumour therapy and bone regeneration to provide a new strategy for managing maxillofacial tumours and improve the quality of life of patients in the future.
Collapse
Affiliation(s)
- Bowen Tan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Tang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongjin Zhong
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yali Wei
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linfeng He
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanting Wu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiabao Wu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Thanasrisuebwong P, Kiattavorncharoen S, Surarit R, Phruksaniyom C, Ruangsawasdi N. Red and Yellow Injectable Platelet-Rich Fibrin Demonstrated Differential Effects on Periodontal Ligament Stem Cell Proliferation, Migration, and Osteogenic Differentiation. Int J Mol Sci 2020; 21:ijms21145153. [PMID: 32708242 PMCID: PMC7404021 DOI: 10.3390/ijms21145153] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
The biological benefits of using two fractions derived from injectable platelet-rich fibrin (i-PRF) in bone regeneration remain unclear. Thus, the current study examined two fractionation protocols producing yellow i-PRF and red i-PRF on periodontal ligament stem cells (PDLSCs). The i-PRF samples from five donors were harvested from two different levels, with and without a buffy coat layer, to obtain red and yellow i-PRF, respectively. The PDLSCs were isolated and characterized before their experimental use. The culture medium in each assay was loaded with 20% of the conditioned medium containing the factors released from the red and yellow i-PRF. Cell proliferation and cell migration were determined with an MTT and trans-well assay, respectively. Osteogenic differentiation was investigated using alkaline phosphatase and Alizarin red staining. The efficiency of both i-PRFs was statistically compared. We found that the factors released from the red i-PRF had a greater effect on cell proliferation and cell migration. Moreover, the factors released from the yellow i-PRF stimulated PDLSC osteogenic differentiation earlier compared with the red i-PRF. These data suggest that the red i-PRF might be suitable for using in bone regeneration because it induced the mobilization and growth of bone regenerative cells without inducing premature mineralization.
Collapse
Affiliation(s)
- Prakan Thanasrisuebwong
- Dental Implant Center, Dental Hospital, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Sirichai Kiattavorncharoen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Rudee Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Chareerut Phruksaniyom
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Nisarat Ruangsawasdi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
- Correspondence:
| |
Collapse
|
8
|
Distler T, Fournier N, Grünewald A, Polley C, Seitz H, Detsch R, Boccaccini AR. Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization. Front Bioeng Biotechnol 2020; 8:552. [PMID: 32671025 PMCID: PMC7326953 DOI: 10.3389/fbioe.2020.00552] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023] Open
Abstract
Critical size bone defects are regularly treated by auto- and allograft transplantation. However, such treatments require to harvest bone from patient donor sites, with often limited tissue availability or risk of donor site morbidity. Not requiring bone donation, three-dimensionally (3D) printed implants and biomaterial-based tissue engineering (TE) strategies promise to be the next generation therapies for bone regeneration. We present here polylactic acid (PLA)-bioactive glass (BG) composite scaffolds manufactured by fused deposition modeling (FDM), involving the fabrication of PLA-BG composite filaments which are used to 3D print controlled open-porous and osteoinductive scaffolds. We demonstrated the printability of PLA-BG filaments as well as the bioactivity and cytocompatibility of PLA-BG scaffolds using pre-osteoblast MC3T3E1 cells. Gene expression analyses indicated the beneficial impact of BG inclusions in FDM scaffolds regarding osteoinduction, as BG inclusions lead to increased osteogenic differentiation of human adipose-derived stem cells in comparison to pristine PLA. Our findings confirm that FDM is a convenient additive manufacturing technology to develop PLA-BG composite scaffolds suitable for bone tissue engineering.
Collapse
Affiliation(s)
- Thomas Distler
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Niklas Fournier
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alina Grünewald
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Polley
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Solakoglu Ö, Götz W, Kiessling MC, Alt C, Schmitz C, Alt EU. Improved guided bone regeneration by combined application of unmodified, fresh autologous adipose derived regenerative cells and plasma rich in growth factors: A first-in-human case report and literature review. World J Stem Cells 2019; 11:124-146. [PMID: 30842809 PMCID: PMC6397807 DOI: 10.4252/wjsc.v11.i2.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Novel strategies are needed for improving guided bone regeneration (GBR) in oral surgery prior to implant placement, particularly in maxillary sinus augmentation (GBR-MSA) and in lateral alveolar ridge augmentation (LRA). This study tested the hypothesis that the combination of freshly isolated, unmodified autologous adipose-derived regenerative cells (UA-ADRCs), fraction 2 of plasma rich in growth factors (PRGF-2) and an osteoinductive scaffold (OIS) (UA-ADRC/PRGF-2/OIS) is superior to the combination of PRGF-2 and the same OIS alone (PRGF-2/OIS) in GBR-MSA/LRA. CASE SUMMARY A 79-year-old patient was treated with a bilateral external sinus lift procedure as well as a bilateral lateral alveolar ridge augmentation. GBR-MSA/LRA was performed with UA-ADRC/PRGF-2/OIS on the right side, and with PRGF-2/OIS on the left side. Biopsies were collected at 6 wk and 34 wk after GBR-MSA/LRA. At the latter time point implants were placed. Radiographs (32 mo follow-up time) demonstrated excellent bone healing. No radiological or histological signs of inflammation were observed. Detailed histologic, histomorphometric, and immunohistochemical analysis of the biopsies evidenced that UA-ADRC/PRGF-2/OIS resulted in better and faster bone regeneration than PRGF-2/OIS. CONCLUSION GBR-MSA with UA-ADRCs, PRGF-2, and an OIS shows effectiveness without adverse effects.
Collapse
Affiliation(s)
- Önder Solakoglu
- External Visiting Lecturer, Dental Department of the University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Clinic for Periodontology and Implantology, Hamburg 22453, Germany.
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn 53111, Germany
| | - Maren C Kiessling
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Eckhard U Alt
- InGeneron GmbH, Munich 80331, Germany
- InGeneron, Inc., Houston, TX 77054, United States
- Isar Klinikum Munich, 80331 Munich, Germany
| |
Collapse
|
10
|
Stojanović S, Najman S, Korać A. Stem Cells Derived from Lipoma and Adipose Tissue-Similar Mesenchymal Phenotype but Different Differentiation Capacity Governed by Distinct Molecular Signature. Cells 2018; 7:E260. [PMID: 30544806 PMCID: PMC6316974 DOI: 10.3390/cells7120260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
Lipomas are benign adipose tissue tumors of unknown etiology, which can vary in size, number, body localization and cell populations within the tissue. Lipoma-derived stem cells (LDSCs) are proposed as a potential tool in regenerative medicine and tissue engineering due to their similar characteristics with adipose-derived stem cells (ADSCs) reported so far. Our study is among the first giving detailed insights into the molecular signature and differences in the differentiation capacity of LDSCs in vitro compared to ADSCs. Mesenchymal stem cell phenotype was analyzed by gene expression and flow cytometric analysis of stem cell markers. Adipogenesis and osteogenesis were analyzed by microscopic analysis, cytochemical and immunocytochemical staining, gene and protein expression analyses. We showed that both LDSCs and ADSCs were mesenchymal stem cells with similar phenotype and stemness state but different molecular basis for potential differentiation. Adipogenesis-related genes expression pattern and presence of more mature adipocytes in ADSCs than in LDSCs after 21 days of adipogenic differentiation, indicated that differentiation capacity of LDSCs was significantly lower compared to ADSCs. Analysis of osteogenesis-related markers after 16 days of osteogenic differentiation revealed that both types of cells had characteristic osteoblast-like phenotype, but were at different stages of osteogenesis. Differences observed between LDSCs and ADSCs are probably due to the distinct molecular signature and their commitment in the tissue that governs their different capacity and fate during adipogenic and osteogenic induction in vitro despite their similar mesenchymal phenotype.
Collapse
Affiliation(s)
- Sanja Stojanović
- Department of Biology and Human Genetics and Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia.
| | - Stevo Najman
- Department of Biology and Human Genetics and Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia.
| | - Aleksandra Korać
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
11
|
Ahmad T, Shin HJ, Lee J, Shin YM, Perikamana SKM, Park SY, Jung HS, Shin H. Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Acta Biomater 2018; 74:464-477. [PMID: 29803004 DOI: 10.1016/j.actbio.2018.05.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022]
Abstract
Development of a bone-like 3D microenvironment with stem cells has always been intriguing in bone tissue engineering. In this study, we fabricated composite spheroids by combining functionalized fibers and human adipose-derived stem cells (hADSCs), which were fused to form a 3D mineralized tissue construct. We prepared fragmented poly (ι-lactic acid) (PLLA) fibers approximately 100 μm long by partial aminolysis of electrospun fibrous mesh. PLLA fibers were then biomineralized with various concentrations of NaHCO3 (0.005, 0.01, and 0.04 M) to form mineralized fragmented fibers (mFF1, mFF2, and mFF3, respectively). SEM analysis showed that the minerals in mFF2 and mFF3 completely covered the fiber surface, and surface chemistry analysis confirmed the presence of hydroxyapatite peaks. Additionally, mFFs formed composite spheroids with hADSCs, demonstrating that the cells were strongly attached to mFFs and homogeneously distributed throughout the spheroid. In vitro culture of spheroids in the media without osteogenic supplements showed significantly enhanced expression of osteogenic genes including Runx2 (20.83 ± 2.83 and 22.36 ± 2.18 fold increase), OPN (14.24 ± 1.71 and 15.076 ± 1.38 fold increase), and OCN (4.36 ± 0.41 and 5.63 ± 0.51 fold increase) in mFF2 and mFF3, respectively, compared to the no mineral fiber group. In addition, mineral contents were significantly increased at day 7. Blocking the biomineral-mediated signaling by PSB 603 significantly down regulated the expression of these genes in mFF3 at day 7. Finally, we fused composite spheroids to form a mineralized 3D tissue construct, which maintained the viability of cells and showed pervasively distributed minerals within the structure. Our composite spheroids could be used as an alternative platform for the development of in vitro bone models, in vivo cell carriers, and as building blocks for bioprinting 3D bone tissue. STATEMENT OF SIGNIFICANCE This manuscript described our recent work for the preparation of biomimeral-coated fibers that can be assembled with mesenchymal stem cells and provide bone-like environment for directed control over osteogenic differentiation. Biomineral coating onto synthetic, biodegradable single fibers was successfully carried out using multiple steps, combination of template protein coating inspired from mussel adhesion and charge-charge interactions between template proteins and mineral ions. The biomineral-coated single micro-scale fibers (1-2.5 μm in diameter) were then assembled with human adipose tissue derived stem cells (hADSCs). The assembled structure exhibited spheroidal architecture with few hundred micrometers. hADSCs within the spheroids were differentiated into osteogenic lineage in vitro and mineralized in the growth media. These spheroids were fused to form in vitro 3D mineralized tissue with larger size.
Collapse
Affiliation(s)
- Taufiq Ahmad
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyeok Jun Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Young Min Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sajeesh Kumar Madhurakat Perikamana
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - So Yeon Park
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Suk Jung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
12
|
Yin Y, Chen P, Yu Q, Peng Y, Zhu Z, Tian J. The Effects of a Pulsed Electromagnetic Field on the Proliferation and Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Med Sci Monit 2018; 24:3274-3282. [PMID: 29775452 PMCID: PMC5987610 DOI: 10.12659/msm.907815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background A low frequency pulsed electromagnetic field (PEMF) has been confirmed to play an important role in promoting the osteogenic differentiation of human bone marrow stem cells (BMSCs). Adipose-derived stem cells (ASCs) possess some attractive characteristics for clinical application compared to BMSCs, such as abundant stem cells from lipoaspirates, faster growth, less discomfort and morbidity during surgery. ASCs can become adipocytes, osteoblasts, chondrocytes, myocytes, neurocytes, and other cell types. Thus, ASCs might be a good alternative in clinical work involving treatment with PEMF. Material/Methods Human ASCs (hASCs)were divided into a control group (without PEMF exposure) and an experimental group (PEMF for two hours per day). We examined the effect of PEMF on promoting cell proliferation and osteogenic differentiation from several aspects: CCK-8 proliferation assay, RNA extraction, qRT-PCR detection, western blotting, and immunofluorescence staining experiments. Results PEMF could promote cell proliferation of human ASCs (hASCs) at an early stage as determined by CCK-8 assay. A specific intensity (1 mT) and frequency (50 Hz) of PEMF promoted osteogenic differentiation in hASCs in alkaline phosphatase (ALP) staining experiments. In addition, bone-related gene expression increased after two weeks of PEMF exposure, the protein expression of OPN, OCN, and RUNX-2 also increased after a longer period (three weeks) of PEMF treatment as determined by western blotting and immunofluorescence staining. Conclusions We found for the first time that PMEF has a role in stimulating cell proliferation of hASCs at an early period, subsequently promoting bone-related gene expression and inducing the expression of related proteins to stimulate osteogenic differentiation.
Collapse
Affiliation(s)
- Yukun Yin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Ping Chen
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Qiang Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Yan Peng
- Department of Human Anatomy, Basic Medical College, Southern Medical University, Baiyun, Guangzhou, China (mainland)
| | - ZeHao Zhu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland)
| | - Jing Tian
- Department of Orthopedics, Zhujiang Hospital,Southern Medical University, Haizhu, Guangzhou, China (mainland)
| |
Collapse
|
13
|
Douglas TE, Vandrovcová M, Kročilová N, Keppler JK, Zárubová J, Skirtach AG, Bačáková L. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. J Dairy Sci 2018; 101:28-36. [DOI: 10.3168/jds.2017-13119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023]
|
14
|
Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells 2017; 9:107-117. [PMID: 28928907 PMCID: PMC5583529 DOI: 10.4252/wjsc.v9.i8.107] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
The application of appropriate cell origin for utilizing in regenerative medicine is the major issue. Various kinds of stem cells have been used for the tissue engineering and regenerative medicine. Such as, several stromal cells have been employed as treat option for regenerative medicine. For example, human bone marrow-derived stromal cells and adipose-derived stromal cells (ADSCs) are used in cell-based therapy. Data relating to the stem cell therapy and processes associated with ADSC has developed remarkably in the past 10 years. As medical options, both the stromal vascular and ADSC suggests good opportunity as marvelous cell-based therapeutics. The some biological features are the main factors that impact the regenerative activity of ADSCs, including the modulation of the cellular immune system properties and secretion of bioactive proteins such as cytokines, chemokines and growth factors, as well as their intrinsic anti-ulcer and anti-inflammatory potential. A variety of diseases have been treated by ADSCs, and it is not surprising that there has been great interest in the possibility that ADSCs might be used as therapeutic strategy to improve a wider range of diseases. This is especially important when it is remembered that routine therapeutic methods are not completely effective in treat of diseases. Here, it was discuss about applications of ADSC to colitis, liver failure, diabetes mellitus, multiple sclerosis, orthopaedic disorders, hair loss, fertility problems, and salivary gland damage.
Collapse
Affiliation(s)
- Reza Tabatabaei Qomi
- Department of Stem Cell, the Academic Center for Education, Culture and Research, PO Box QOM-3713189934, Qom, Iran
| | - Mohsen Sheykhhasan
- Department of Stem Cell, the Academic Center for Education, Culture and Research, PO Box QOM-3713189934, Qom, Iran
| |
Collapse
|
15
|
Hikita A, Chung UI, Hoshi K, Takato T. Bone Regenerative Medicine in Oral and Maxillofacial Region Using a Three-Dimensional Printer<sup/>. Tissue Eng Part A 2017; 23:515-521. [PMID: 28351222 DOI: 10.1089/ten.tea.2016.0543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bone grafts currently used for the treatment of large bone defect or asymmetry in oral and maxillofacial region include autologous, allogeneic, and artificial bones. Although artificial bone is free from the concerns of donor site morbidity, limitation of volume, disease transmission, and ethical issues, it lacks osteogenic and osteoinductive activities. In addition, molding of the artificial bone is an issue especially when it is used for the augmentation of bone as onlay grafts. To solve this problem, additive manufacturing techniques have been applied to fabricate bones which have outer shapes conformed to patients' bones. We developed a custom-made artificial bone called a computed tomography (CT)-bone. Efficacy of CT-bone was proven in a clinical research and clinical trial, showing good manipulability, stability, and patient satisfaction. However, low replacement rate of artificial bones by endogenous bones remain an unsolved issue. Loading of cells and growth factors will improve the bone replacement by inducing osteogenic and osteoinductive activities. In addition, the three-dimensional bioprinting technique will facilitate bone regeneration by placing cells and biological substances into appropriate sites.
Collapse
Affiliation(s)
- Atsuhiko Hikita
- 1 Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, The University of Tokyo , Bunkyo-ku, Japan
| | - Ung-Il Chung
- 2 Department of Bioengineering, Graduate School of Engineering, The University of Tokyo , Bunkyo-ku, Japan
| | - Kazuto Hoshi
- 3 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo , Bunkyo-ku, Japan
| | - Tsuyoshi Takato
- 3 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo , Bunkyo-ku, Japan
| |
Collapse
|
16
|
Frey BM, Zeisberger SM, Hoerstrup SP. Stem Cell Factories - the Rebirth of Tissue Engineering and Regenerative Medicine. Transfus Med Hemother 2016; 43:244-246. [PMID: 27721699 DOI: 10.1159/000448438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Affiliation(s)
- Beat M Frey
- Blood Transfusion Service Zurich, Zurich-Schlieren, Switzerland
| | | | | |
Collapse
|
17
|
Frey BM, Zeisberger SM, Hoerstrup SP. Tissue Engineering and Regenerative Medicine - New Initiatives for Individual Treatment Offers. Transfus Med Hemother 2016; 43:318-319. [PMID: 27781018 DOI: 10.1159/000450716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
- Beat M Frey
- Blood Transfusion Service Zurich, Zurich-Schlieren, Switzerland
| | - Steffen M Zeisberger
- Wyss Translational Center Zurich, Regenerative Medicine Technologies Platform, University of Zurich and ETH Zurich; Zurich, Switzerland
| | - Simon P Hoerstrup
- Wyss Translational Center Zurich, Regenerative Medicine Technologies Platform, University of Zurich and ETH Zurich; Zurich, Switzerland; Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| |
Collapse
|