1
|
Wu J, Tan S, Feng Z, Zhao H, Yu C, Yang Y, Zhong B, Zheng W, Yu H, Li H. Whole-genome de novo sequencing reveals genomic variants associated with differences of sex development in SRY negative pigs. Biol Sex Differ 2024; 15:68. [PMID: 39223676 PMCID: PMC11367908 DOI: 10.1186/s13293-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Differences of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. In more than 50% of human DSD cases, a molecular diagnosis is not available. In intensively farmed pig populations, the incidence of XX DSD pigs is relatively high, leading to economic losses for pig breeders. Interestingly, in the majority of 38, XX DSD pigs, gonads still develop into testis-like structures or ovotestes despite the absence of the testis-determining gene (SRY). However, the current understanding of the molecular background of XX DSD pigs remains limited. METHODS Anatomical and histological characteristics of XX DSD pigs were analysed using necropsy and HE staining. We employed whole-genome sequencing (WGS) with 10× Genomics technology and used de novo assembly methodology to study normal female and XX DSD pigs. Finally, the identified variants were validated in 32 XX DSD pigs, and the expression levels of the candidate variants in the gonads of XX DSD pigs were further examined. RESULTS XX DSD pigs are characterised by the intersex reproductive organs and the absence of germ cells in the seminiferous tubules of the gonads. We identified 4,950 single-nucleotide polymorphisms (SNPs) from non-synonymous mutations in XX DSD pigs. Cohort validation results highlighted two specific SNPs, "c.218T > C" in the "Interferon-induced transmembrane protein 1 gene (IFITM1)" and "c.1043C > G" in the "Newborn ovary homeobox gene (NOBOX)", which were found exclusively in XX DSD pigs. Moreover, we verified 14 candidate structural variants (SVs) from 1,474 SVs, identifying a 70 bp deletion fragment in intron 5 of the WW domain-containing oxidoreductase gene (WWOX) in 62.5% of XX DSD pigs. The expression levels of these three candidate genes in the gonads of XX DSD pigs were significantly different from those of normal female pigs. CONCLUSION The nucleotide changes of IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment of the WWOX were the most dominant variants among XX DSD pigs. This study provides a theoretical basis for better understanding the molecular background of XX DSD pigs. DSD are conditions affecting development of the gonads or genitalia. These disorders can happen in many different types of animals, including pigs, goats, dogs, and people. In people, DSD happens in about 0.02-0.13% of births, and in pigs, the rate is between 0.08% and 0.75%. Pigs have a common type of DSD where the animal has female chromosomes (38, XX) but no SRY gene, which is usually found on the Y chromosome in males. XX DSD pigs may look like both males and females on the outside and have testis-like or ovotestis (a mix of ovary and testis) gonads inside. XX DSD pigs often lead to not being able to have piglets, slower growth, lower chance of survival, and poorer meat quality. Here, we used a method called whole-genome de novo sequencing to look for variants in the DNA of XX DSD pigs. We then checked these differences in a larger group of pigs. Our results reveal the nucleotide changes in IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment in intron 5 of the WWOX, all linked to XX DSD pigs. The expression levels of these three genes were also different in the gonads of XX DSD pigs compared to normal female pigs. These variants are expected to serve as valuable molecular markers for XX DSD pigs. Because pigs are a lot like humans in their genes, physiology, and body structure, this research could help us learn more about what causes DSD in people.
Collapse
Affiliation(s)
- Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Shuwen Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Yin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Bingzhou Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Wenxiao Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| |
Collapse
|
2
|
Veyrunes F, Perez J, Heitzmann LD, Saunders PA, Givalois L. Hormone profiles of the African pygmy mouse Mus minutoides, a species with XY female sex reversal. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:130-137. [PMID: 38059664 DOI: 10.1002/jez.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
In mammals, most sex differences in phenotype are controlled by gonadal hormones, but recent work on transgenic mice has shown that sex chromosomes can have a direct influence on sex-specific behaviors. In this study, we take advantage of the naturally occurring sex reversal in a mouse species, Mus minutoides, to investigate for the first time the relationship between sex chromosomes, hormones, and behaviors in a wild species. In this model, a feminizing variant of the X chromosome, named X*, produces three types of females with different sex chromosome complements (XX, XX*, and X*Y), associated with alternative behavioral phenotypes, while all males are XY. We thus compared the levels of three major circulating steroid hormones (testosterone, corticosterone, and estradiol) in the four sex genotypes to disentangle the influence of sex chromosomes and sex hormones on behavior. First, we did not find any difference in testosterone levels in the three female genotypes, although X*Y females are notoriously more aggressive. Second, in agreement with their lower anxiety-related behaviors, X*Y females and XY males display lower baseline corticosterone concentration than XX and XX* females. Instead of a direct hormonal influence, this result rather suggests that sex chromosomes may have an impact on the baseline corticosterone level, which in turn may influence behaviors. Third, estradiol concentrations do not explain the enhanced reproductive performance and maternal care behavior of the X*Y females compared to the XX and XX* females. Overall, this study highlights that most of the behaviors varying along with sex chromosome complement of this species are more likely driven by genetic factors rather than steroid hormone concentrations.
Collapse
Affiliation(s)
- Frederic Veyrunes
- ISEM, Institut des Sciences de l'Evolution de Montpellier UMR 5554, CNRS, Université Montpellier, IRD, Montpellier, France
| | - Julie Perez
- ISEM, Institut des Sciences de l'Evolution de Montpellier UMR 5554, CNRS, Université Montpellier, IRD, Montpellier, France
| | - Louise D Heitzmann
- ISEM, Institut des Sciences de l'Evolution de Montpellier UMR 5554, CNRS, Université Montpellier, IRD, Montpellier, France
| | - Paul A Saunders
- ISEM, Institut des Sciences de l'Evolution de Montpellier UMR 5554, CNRS, Université Montpellier, IRD, Montpellier, France
| | - Laurent Givalois
- MMDN, Molecular Mechanisms in Neurodegenerative Dementia Laboratory, Université Montpellier, EPHE-PSL, INSERM U1198, Montpellier, France
- Department of Psychiatry and Neurosciences, CR-CHUQ, Faculty of Medicine, Laval University, Québec City, Canada
- CNRS, Paris, France
| |
Collapse
|
3
|
Berry DP, Herman EK, Carthy TR, Jennings R, Bandi-Kenari N, O'Connor RE, Mee JF, O'Donovan J, Mathews D, Stothard P. Characterisation of eight cattle with Swyer syndrome by whole-genome sequencing. Anim Genet 2023; 54:93-103. [PMID: 36504456 DOI: 10.1111/age.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Swyer syndrome is where an individual has the karyotype of a typical male yet is phenotypically a female. The lack of a (functional) SRY gene located on the Y-chromosome is implicated in some cases of the Swyer syndrome, although many Swyer individuals with an apparently fully functional SRY gene have also been documented. The present study undertook whole genome sequence analyses of eight cattle with suspected Swyer syndrome and compared their genome to that of both a control male and female. Sequence analyses coupled with female phenotypes confirmed that all eight individuals had the 60,XY sex reversal Swyer syndrome. Seven of the eight Swyer syndrome individuals had a deletion on the Y chromosome encompassing the SRY gene (i.e., SRY-). The eighth individual had no obvious mutation in the SRY gene (SRY+) or indeed in any reported gene associated with sex reversal in mammals; a necropsy was performed on this individual. No testicles were detected during the necropsy. Histological examination of the reproductive tract revealed an immature uterine body and horns with inactive glandular tissue of normal histological appearance; both gonads were elongated, a characteristic of most reported cases of Swyer in mammals. The flanking sequence of 11 single nucleotide polymorphisms within 10 kb of the SRY gene are provided to help diagnose some cases of Swyer syndrome. These single nucleotide polymorphisms will not, however, detect all cases of Swyer syndrome since, as evidenced from the present study (and other studies), some individuals with the Swyer condition still contain the SRY gene (i.e., SRY+).
Collapse
Affiliation(s)
- Donagh P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Emily K Herman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Tara R Carthy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - Nahid Bandi-Kenari
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | - John F Mee
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Jim O'Donovan
- Department of Agriculture, Food and the Marine, Regional Veterinary Laboratory, Cork, Ireland
| | - Daragh Mathews
- Irish Cattle Breeding Federation, Ballincollig, Co. Cork, Ireland
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Saunders PA, Perez J, Ronce O, Veyrunes F. Multiple sex chromosome drivers in a mammal with three sex chromosomes. Curr Biol 2022; 32:2001-2010.e3. [PMID: 35381184 DOI: 10.1016/j.cub.2022.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022]
Abstract
Eukaryotes with separate males and females display a great diversity in the way they determine sex, but it is still unclear what evolutionary forces cause transitions between sex-determining systems. Rather that the lack of hypotheses, the problem is the scarcity of adequate biological systems to test them. Here, we take advantage of the recent evolution of a feminizing X chromosome (called X∗) in the African pygmy mouse Mus minutoides to investigate one of the evolutionary forces hypothesized to cause such transitions, namely sex chromosome drive (i.e., biased transmission of sex chromosomes to the next generation). Through extensive molecular sexing of pups at weaning, we reveal the existence of a remarkable male sex chromosome drive system in this species, whereby direction and strength of drive are conditional upon the genotype of males' partners: males transmit their Y at a rate close to 80% when mating with XX or XX∗ females and only 36% when mating with X∗Y females. Using mathematical modeling, we explore the joint evolution of these unusual sex-determining and drive systems, revealing that different sequences of events could have led to the evolution of this bizarre system and that the "conditional" nature of sex chromosome drive plays a crucial role in the short- and long-term maintenance of the three sex chromosomes.
Collapse
Affiliation(s)
- Paul A Saunders
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université de Montpellier, IRD, EPHE), 34090 Montpellier, France.
| | - Julie Perez
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université de Montpellier, IRD, EPHE), 34090 Montpellier, France
| | - Ophélie Ronce
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université de Montpellier, IRD, EPHE), 34090 Montpellier, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 (CNRS, Université de Montpellier, IRD, EPHE), 34090 Montpellier, France
| |
Collapse
|
5
|
Ramos L, Antunes A. Decoding sex: Elucidating sex determination and how high-quality genome assemblies are untangling the evolutionary dynamics of sex chromosomes. Genomics 2022; 114:110277. [PMID: 35104609 DOI: 10.1016/j.ygeno.2022.110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Sexual reproduction is a diverse and widespread process. In gonochoristic species, the differentiation of sexes occurs through diverse mechanisms, influenced by environmental and genetic factors. In most vertebrates, a master-switch gene is responsible for triggering a sex determination network. However, only a few genes have acquired master-switch functions, and this process is associated with the evolution of sex-chromosomes, which have a significant influence in evolution. Additionally, their highly repetitive regions impose challenges for high-quality sequencing, even using high-throughput, state-of-the-art techniques. Here, we review the mechanisms involved in sex determination and their role in the evolution of species, particularly vertebrates, focusing on sex chromosomes and the challenges involved in sequencing these genomic elements. We also address the improvements provided by the growth of sequencing projects, by generating a massive number of near-gapless, telomere-to-telomere, chromosome-level, phased assemblies, increasing the number and quality of sex-chromosome sequences available for further studies.
Collapse
Affiliation(s)
- Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
6
|
Sex Chromosomes and Master Sex-Determining Genes in Turtles and Other Reptiles. Genes (Basel) 2021; 12:genes12111822. [PMID: 34828428 PMCID: PMC8622242 DOI: 10.3390/genes12111822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
Among tetrapods, the well differentiated heteromorphic sex chromosomes of birds and mammals have been highly investigated and their master sex-determining (MSD) gene, Dmrt1 and SRY, respectively, have been identified. The homomorphic sex chromosomes of reptiles have been the least studied, but the gap with birds and mammals has begun to fill. This review describes our current knowledge of reptilian sex chromosomes at the cytogenetic and molecular level. Most of it arose recently from various studies comparing male to female gene content. This includes restriction site-associated DNA sequencing (RAD-Seq) experiments in several male and female samples, RNA sequencing and identification of Z- or X-linked genes by male/female comparative transcriptome coverage, and male/female transcriptomic or transcriptome/genome substraction approaches allowing the identification of Y- or W-linked transcripts. A few putative master sex-determining (MSD) genes have been proposed, but none has been demonstrated yet. Lastly, future directions in the field of reptilian sex chromosomes and their MSD gene studies are considered.
Collapse
|
7
|
Migale R, Neumann M, Lovell-Badge R. Long-Range Regulation of Key Sex Determination Genes. Sex Dev 2021; 15:360-380. [PMID: 34753143 DOI: 10.1159/000519891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/26/2021] [Indexed: 11/19/2022] Open
Abstract
The development of sexually dimorphic gonads is a unique process that starts with the specification of the bipotential genital ridges and culminates with the development of fully differentiated ovaries and testes in females and males, respectively. Research on sex determination has been mostly focused on the identification of sex determination genes, the majority of which encode for proteins and specifically transcription factors such as SOX9 in the testes and FOXL2 in the ovaries. Our understanding of which factors may be critical for sex determination have benefited from the study of human disorders of sex development (DSD) and animal models, such as the mouse and the goat, as these often replicate the same phenotypes observed in humans when mutations or chromosomic rearrangements arise in protein-coding genes. Despite the advances made so far in explaining the role of key factors such as SRY, SOX9, and FOXL2 and the genes they control, what may regulate these factors upstream is not entirely understood, often resulting in the inability to correctly diagnose DSD patients. The role of non-coding DNA, which represents 98% of the human genome, in sex determination has only recently begun to be fully appreciated. In this review, we summarize the current knowledge on the long-range regulation of 2 important sex determination genes, SOX9 and FOXL2, and discuss the challenges that lie ahead and the many avenues of research yet to be explored in the sex determination field.
Collapse
|
8
|
Saunders PA, Veyrunes F. Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities. Genes (Basel) 2021; 12:1770. [PMID: 34828376 PMCID: PMC8617835 DOI: 10.3390/genes12111770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Therian mammals have among the oldest and most conserved sex-determining systems known to date. Any deviation from the standard XX/XY mammalian sex chromosome constitution usually leads to sterility or poor fertility, due to the high differentiation and specialization of the X and Y chromosomes. Nevertheless, a handful of rodents harbor so-called unusual sex-determining systems. While in some species, fertile XY females are found, some others have completely lost their Y chromosome. These atypical species have fascinated researchers for over 60 years, and constitute unique natural models for the study of fundamental processes involved in sex determination in mammals and vertebrates. In this article, we review current knowledge of these species, discuss their similarities and differences, and attempt to expose how the study of their exceptional sex-determining systems can further our understanding of general processes involved in sex chromosome and sex determination evolution.
Collapse
Affiliation(s)
- Paul A. Saunders
- Institut des Sciences de l’Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS 7000, Australia
| | - Frédéric Veyrunes
- Institut des Sciences de l’Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
| |
Collapse
|
9
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
10
|
Tan S, Zhou Y, Zhao H, Wu J, Yu H, Yang Y, Yang Y, Zhao H, Li H. Comprehensive transcriptome analysis of hypothalamus reveals genes associated with disorders of sex development in pigs. J Steroid Biochem Mol Biol 2021; 210:105875. [PMID: 33746111 DOI: 10.1016/j.jsbmb.2021.105875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
XX sex reversal, also called XX disorders of sex development (XX-DSD), is a condition affecting the development of the gonads or genitalia, and is relatively common in pigs. However, its genetic etiology and transcriptional regulation mechanism in the hypothalamic-pituitary-gonadal axis (HPGA) remain mostly unknown. XX-DSD (SRY-negative) pigs and normal sows were selected by external genitalia observation. The hypothalamus, which is the integrated center of the HPGA was sampled for whole-transcriptome RNA-seq. The role of DEmiRNA was validated by its overexpression and knockdown in vitro. A total of 1,258 lncRNAs, 1,086 mRNAs, and 61 microRNAs differentially expressed in XX-DSD pigs compared with normal female pigs. Genes in the hormone biosynthesis and secretion pathway significantly up-regulated, and the up-regulation of GNRH1, KISS1 and AVP may associate with the abnormal secretion of GnRH. We also predicted the lncRNA-miRNA-mRNA co-expression triplets and constructed three competing endogenous RNA (ceRNA) potentially associated with XX-DSD. Functional enrichment studies suggested that TCONS_00340886, TCONS_00000204 and miR-181a related to GnRH secretion. Further, miR-181a inhibitor up-regulated GNRH1, PAK6, and CAMK4 in the GT1-7 cells. Conversely, transfection of miR-181a mimics obtained the opposite trends. The expression levels of FSHR, LHR, ESR1 and ESR2 were significantly higher in XX-DSD gondas than those in normal sows. Taken together, we proposed that the balance of endocrine had broken in XX-DSD pigs. The current study is the first to examine the transcriptomic profile in the hypothalamus of XX-DSD pigs. It provides new insight into coding and non-coding RNAs that may be associated with DSD in pigs.
Collapse
Affiliation(s)
- Shuwen Tan
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan 430072, China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yi Zhou
- College of Basic Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan 430072, China; College of Science, Tibet University, Lhasa 850000, China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
11
|
Piferrer F, Anastasiadi D. Do the Offspring of Sex Reversals Have Higher Sensitivity to Environmental Perturbations? Sex Dev 2021; 15:134-147. [PMID: 33910195 DOI: 10.1159/000515192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
Sex determination systems in vertebrates vary along a continuum from genetic (GSD) to environmental sex determination (ESD). Individuals that show a sexual phenotype opposite to their genotypic sex are called sex reversals. Aside from genetic elements, temperature, sex steroids, and exogenous chemicals are common factors triggering sex reversal, a phenomenon that may occur even in strict GSD species. In this paper, we review the literature on instances of sex reversal in fish, amphibians, reptiles, birds, and mammals. We focus on the offspring of sex-reversed parents in the instances that they can be produced, and show that in all cases studied the offspring of these sex-reversed parents exhibit a higher sensitivity to environmental perturbations than the offspring of non-sex-reversed parents. We suggest that the inheritance of this sensitivity, aside from possible genetic factors, is likely to be mediated by epigenetic mechanisms such as DNA methylation, since these mechanisms are responsive to environmental cues, and epigenetic modifications can be transmitted to the subsequent generations. Species with a chromosomal GSD system with environmental sensitivity and availability of genetic sex markers should be employed to further test whether offspring of sex-reversed parents have greater sensitivity to environmental perturbations. Future studies could also benefit from detailed whole-genome data in order to elucidate the underlying molecular mechanisms. Finally, we discuss the consequences of such higher sensitivity in the context of global climate change.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
12
|
Vining B, Ming Z, Bagheri-Fam S, Harley V. Diverse Regulation but Conserved Function: SOX9 in Vertebrate Sex Determination. Genes (Basel) 2021; 12:genes12040486. [PMID: 33810596 PMCID: PMC8066042 DOI: 10.3390/genes12040486] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Sex determination occurs early during embryogenesis among vertebrates. It involves the differentiation of the bipotential gonad to ovaries or testes by a fascinating diversity of molecular switches. In most mammals, the switch is SRY (sex determining region Y); in other vertebrates it could be one of a variety of genes including Dmrt1 or dmy. Downstream of the switch gene, SOX9 upregulation is a central event in testes development, controlled by gonad-specific enhancers across the 2 Mb SOX9 locus. SOX9 is a ‘hub’ gene of gonadal development, regulated positively in males and negatively in females. Despite this diversity, SOX9 protein sequence and function among vertebrates remains highly conserved. This article explores the cellular, morphological, and genetic mechanisms initiated by SOX9 for male gonad differentiation.
Collapse
Affiliation(s)
- Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (B.V.); (Z.M.); (S.B.-F.)
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC 3800, Australia
- Correspondence: ; Tel.: +61-3-8572-2527
| |
Collapse
|
13
|
Chromosome Abnormalities and Fertility in Domestic Bovids: A Review. Animals (Basel) 2021; 11:ani11030802. [PMID: 33809390 PMCID: PMC8001068 DOI: 10.3390/ani11030802] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In domestic bovids, numerical autosome abnormalities have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. However, numerical abnormalities involving sex chromosomes and structural (balanced) chromosome anomalies have been more frequently detected because they are most often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape animal selection, with subsequent deleterious effects on fertility, especially in female carriers. Abstract After discovering the Robertsonian translocation rob(1;29) in Swedish red cattle and demonstrating its harmful effect on fertility, the cytogenetics applied to domestic animals have been widely expanded in many laboratories in order to find relationships between chromosome abnormalities and their phenotypic effects on animal production. Numerical abnormalities involving autosomes have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breeders. In contrast, numerical sex chromosome abnormalities and structural chromosome anomalies have been more frequently detected in domestic bovids because they are often not phenotypically visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control, escape selection, with subsequent harmful effects on fertility, especially in female carriers. Chromosome abnormalities can also be easily spread through the offspring, especially when using artificial insemination. The advent of chromosome banding and FISH-mapping techniques with specific molecular markers (or chromosome-painting probes) has led to the development of powerful tools for cytogeneticists in their daily work. With these tools, they can identify the chromosomes involved in abnormalities, even when the banding pattern resolution is low (as has been the case in many published papers, especially in the past). Indeed, clinical cytogenetics remains an essential step in the genetic improvement of livestock.
Collapse
|
14
|
A Disorder of Sex Development in a Holstein-Friesian Heifer with a Rare Mosaicism (60,XX/90,XXY): A Genetic, Anatomical, and Histological Study. Animals (Basel) 2021; 11:ani11020285. [PMID: 33498673 PMCID: PMC7911242 DOI: 10.3390/ani11020285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Disorders of sex development (DSDs) are congenital conditions in which a discordance between chromosomal, gonadal, or phenotypic sex is observed. DSDs are serious problems in animal breeding, as they lead to sterility. In cattle, the most common form of DSD is freemartinism, which manifests as the presence of leukocyte chimerism (XX/XY), and occurs in heifers originating from heterosexual twin pregnancy. Other forms of DSD are rarely observed in this species. In this study, we describe a very rare diploid/triploid (60,XX/90,XXY) condition in a DSD heifer. Comprehensive clinical, anatomical, histopathological and genetic analysis was performed. Abstract In this study, we describe an eighteen-month-old Holstein–Friesian heifer with a deformed vulva, located abdominally. The heifer showed typical signs of estrus. A comprehensive anatomical and histopathological examination revealed a blind-ended vagina and an additional section of urethra, which became a part of the shortened penis. Cytogenetic analysis showed the presence of two cell lines: 60,XX and 90,XXY. The frequency of the triploid cell line was low (3%) in leukocytes and elevated (35%) in fibroblasts. The molecular detection of Y-linked genes (SRY and AMELY) in the blood, skin, hair follicles, and buccal epithelial cells confirmed the presence of a cell line carrying the Y chromosome. Genotyping of 16 microsatellite markers in DNA isolated from hair follicles and fibroblast culture showed the presence of one (homozygous) or two variants (heterozygous) at all the studied loci, and allowed chimerism to be excluded. We concluded that the heifer had diploid/triploid (60,XX/90,XXY) mosaicism. To our knowledge, this is only the fifth such case to be reported worldwide in this species. Since cytogenetic studies are routinely performed on in vitro cultured leukocytes, we suspect that the prevalence of this chromosome abnormality is underestimated, as it is known from published reports that the frequency of the triploid cell line is usually very low in leukocytes.
Collapse
|
15
|
Vilchis F, Mares L, Chávez B, Paredes A, Ramos L. Late-onset vanishing testis-like syndrome in a 38,XX/38,XY agonadic pig (Sus scrofa). Reprod Fertil Dev 2021; 32:284-291. [PMID: 31679558 DOI: 10.1071/rd18514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/15/2019] [Indexed: 11/23/2022] Open
Abstract
Here we describe the case of a pig with intersex traits including ambiguous external genitalia, sex chromosome abnormalities and a late-onset vanishing testis-like syndrome. It was identified shortly after birth by presenting a predominantly female phenotype with two large scrotal masses resembling testes. The karyotype is 38,XX (53%)/38,XY (47%). Sex steroid levels were undetectable at 1 and 7 months old, whereas circulating cortisol levels were typical. DNA studies excluded gene alterations in sex-determining region Y (SRY), dosage-sensitive sex reversal-congenital adrenal hypoplasia critical region on the X chromosome protein 1 (DAX1), SRY-related high mobility group-box gene 9 (SOX9), nuclear receptor subfamily 5, group a, member 1 (NR5A1), nuclear receptor subfamily 3, group c, member 4 (NR3C4) and steroid 5-alpha-reductase 2 (SRD5A2). At 8 months of age the XX/XY pig evinced delayed growth; however, the most striking phenotypic change was that the testes-like structures completely vanished in a 2-3-week period. The internal genitalia were found to consist of a portion of a vagina and urethra. No fallopian tubes, uterus or remnants of Wolffian derivatives were observed. More importantly, no testes, ovaries, ovotestis or gonadal streaks could be identified. The XX/XY sex chromosome dosage and/or overexpression of the DAX1 gene on the X chromosome in the presence of a wild-type SRY gene may have caused this predominantly female phenotype. This specimen represents an atypical case of 38,XX/38,XY chimeric, ovotesticular disorder of sex development associated with agonadism.
Collapse
Affiliation(s)
- Felipe Vilchis
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México
| | - Lizette Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México
| | - Bertha Chávez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México
| | - Arcadio Paredes
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México
| | - Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México; and Corresponding author. ;
| |
Collapse
|
16
|
Albarella S, Lorenzi LD, Rossi E, Prisco F, Riccardi MG, Restucci B, Ciotola F, Parma P. Analysis of XX SRY-Negative Sex Reversal Dogs. Animals (Basel) 2020; 10:ani10091667. [PMID: 32947906 PMCID: PMC7552623 DOI: 10.3390/ani10091667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The study of XX SRY-negative sex reversal cases is of great interest because testicular tissue develops in these subjects in the absence of SRY gene, thus allowing us to deepen the knowledge of all the other genes involved in the development of testes and the structures related to the male reproductive apparatus. This paper reports the results of the study of four new canine disorders of sex development (DSDs) XX SRY-negative cases in which 11 copy number variations (CNVs) are observed, five of which are never described. Abstract Impaired fertility associated with disorders of sex development (DSDs) due to genetic causes in dogs are more and more frequently reported. Affected dogs are usually of specific breeds thus representing a cause of economic losses for breeders. The aim of this research is to report the clinical, cytogenetic and molecular genetic findings of four XX SRY-negative DSD dog cases. All the subjects showed a female aspect and the presence of an enlarged clitoris with a penis bone. Morphopathological analyses performed in three of the four cases showed the presence of testes in two cases and ovotestis in another. Conventional and R-banded cytogenetic techniques were applied showing that no chromosome abnormalities were involved in these DSDs. CGH arrays show the presence of 11 copy number variations (CNVs), one of which is a duplication of 458 Kb comprising the genomic region between base 17,503,928 and base 17,962,221 of chromosome 9 (CanFam3 genome assembly). This CNV, confirmed also by qPCR, includes the promoter region of SOX9 gene and could explain the observed phenotype.
Collapse
Affiliation(s)
- Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (F.P.); (B.R.); (F.C.)
- Correspondence: ; Tel.: +39-081-2536502; Fax: +39-081-292981
| | - Lisa De Lorenzi
- Department of Agricultural and Environmental Sciences, Milano University, via Celoria 2, 20133 Milan, Italy; (L.D.L.); (P.P.)
| | - Elena Rossi
- Department of Molecular Medicine, Pavia University, via Forlanini 12, 27100 Pavia, Italy;
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (F.P.); (B.R.); (F.C.)
| | - Marita Georgia Riccardi
- Experimental Zooprophylactic Institute of Southern Italy, via Salute 2, 80055 Portici, Italy;
| | - Brunella Restucci
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (F.P.); (B.R.); (F.C.)
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Delpino 1, 80137 Naples, Italy; (F.P.); (B.R.); (F.C.)
| | - Pietro Parma
- Department of Agricultural and Environmental Sciences, Milano University, via Celoria 2, 20133 Milan, Italy; (L.D.L.); (P.P.)
| |
Collapse
|
17
|
Rago A, Werren JH, Colbourne JK. Sex biased expression and co-expression networks in development, using the hymenopteran Nasonia vitripennis. PLoS Genet 2020; 16:e1008518. [PMID: 31986136 PMCID: PMC7004391 DOI: 10.1371/journal.pgen.1008518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/06/2020] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Sexual dimorphism requires regulation of gene expression in developing organisms. These developmental differences are caused by differential expression of genes and isoforms. The effect of expressing a gene is also influenced by which other genes are simultaneously expressed (functional interactions). However, few studies have described how these processes change across development. We compare the dynamics of differential expression, isoform switching and functional interactions in the sexual development of the model parasitoid wasp Nasonia vitripennis, a system that permits genome wide analysis of sex bias from early embryos to adults. We find relatively little sex-bias in embryos and larvae at the gene level, but several sub-networks show sex-biased functional interactions in early developmental stages. These networks provide new candidates for hymenopteran sex determination, including histone modification. In contrast, sex-bias in pupae and adults is driven by the differential expression of genes. We observe sex-biased isoform switching consistently across development, but mostly in genes that are already differentially expressed. Finally, we discover that sex-biased networks are enriched by genes specific to the Nasonia clade, and that those genes possess the topological properties of key regulators. These findings suggest that regulators in sex-biased networks evolve more rapidly than regulators of other developmental networks.
Collapse
Affiliation(s)
- Alfredo Rago
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - John K. Colbourne
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Rodríguez Gutiérrez D, Biason-Lauber A. Pluripotent Cell Models for Gonadal Research. Int J Mol Sci 2019; 20:ijms20215495. [PMID: 31690065 PMCID: PMC6862629 DOI: 10.3390/ijms20215495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Sex development is a complex process involving many genes and hormones. Defects in this process lead to Differences of Sex Development (DSD), a group of heterogeneous conditions not as rare as previously thought. Part of the obstacles in proper management of these patients is due to an incomplete understanding of the genetics programs and molecular pathways involved in sex development and DSD. Several challenges delay progress and the lack of a proper model system for the single patient severely hinders advances in understanding these diseases. The revolutionary techniques of cellular reprogramming and guided in vitro differentiation allow us now to exploit the versatility of induced pluripotent stem cells to create alternatives models for DSD, ideally on a patient-specific personalized basis.
Collapse
Affiliation(s)
- Daniel Rodríguez Gutiérrez
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Anna Biason-Lauber
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
19
|
Baudat F, de Massy B, Veyrunes F. Sex chromosome quadrivalents in oocytes of the African pygmy mouse Mus minutoides that harbors non-conventional sex chromosomes. Chromosoma 2019; 128:397-411. [PMID: 30919035 DOI: 10.1007/s00412-019-00699-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Eutherian mammals have an extremely conserved sex-determining system controlled by highly differentiated sex chromosomes. Females are XX and males XY, and any deviation generally leads to infertility, mainly due to meiosis disruption. The African pygmy mouse (Mus minutoides) presents an atypical sex determination system with three sex chromosomes: the classical X and Y chromosomes and a feminizing X chromosome variant, called X*. Thus, three types of females coexist (XX, XX*, and X*Y) that all show normal fertility. Moreover, the three chromosomes (X and Y on one side and X* on the other side) are fused to different autosomes, which results in the inclusion of the sex chromosomes in a quadrivalent in XX* and X*Y females at meiotic prophase. Here, we characterized the configurations adopted by these sex chromosome quadrivalents during meiotic prophase. The XX* quadrivalent displayed a closed structure in which all homologous chromosome arms were fully synapsed and with sufficient crossovers to ensure the reductional segregation of all chromosomes at the first meiotic division. Conversely, the X*Y quadrivalents adopted either a closed configuration with non-homologous synapsis of the X* and Y chromosomes or an open chain configuration in which X* and Y remained asynapsed and possibly transcriptionally silenced. Moreover, the number of crossovers was insufficient to ensure chromosome segregation in a significant fraction of nuclei. Together, these findings raise questions about the mechanisms allowing X*Y females to have a level of fertility as good as that of XX and XX* females, if not higher.
Collapse
Affiliation(s)
- Frédéric Baudat
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France.
| | - Bernard de Massy
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France.
| |
Collapse
|
20
|
Elevated incidence of freemartinism in pigs detected by droplet digital PCR and cytogenetic techniques. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
De Lorenzi L, Arrighi S, Rossi E, Grignani P, Previderè C, Bonacina S, Cremonesi F, Parma P. XY (SRY-positive) Ovarian Disorder of Sex Development in Cattle. Sex Dev 2018; 12:196-203. [PMID: 29902792 DOI: 10.1159/000489869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
In mammals, the sex of the embryo depends on the SRY gene. In the presence of at least one intact and functional copy of this genetic factor (XY embryo) undifferentiated gonads will develop as testicles that subsequently determine the male phenotype. When this factor is not present, i.e., in subjects with 2 X chromosomes, an alternative pathway induces the development of ovaries, hence a female phenotype. In this case study, we describe a female cattle affected by a disorder of sex development (DSD). The subject, despite having a chromosomal XY constitution, did not develop testicles but ovaries, although they were underdeveloped. Moreover, genetic analysis highlighted the presence of the SRY gene with a normal coding region in both blood- and tissue-derived DNA. A chimeric condition was excluded in blood by sexing more than 350 cells and by allele profile investigation of 18 microsatellite markers. Array CGH analysis showed the presence of a not yet described 99-kb duplication (BTA18), but its relationship with the phenotype remains to be demonstrated. Gonadal histology demonstrated paired ovaries: the left one containing a large corpus luteum and the right one showing an underdeveloped aspect and very few early follicles. To our knowledge, we describe the first case of XY (SRY+) DSD in cattle with a normal SRY gene coding sequence.
Collapse
|
22
|
Veyrunes F, Perez J. X inactivation in a mammal species with three sex chromosomes. Chromosoma 2017; 127:261-267. [PMID: 29256059 DOI: 10.1007/s00412-017-0657-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 11/30/2022]
Abstract
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.
Collapse
Affiliation(s)
- Frédéric Veyrunes
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS / Université Montpellier / IRD / EPHE), Montpellier, France.
| | - Julie Perez
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS / Université Montpellier / IRD / EPHE), Montpellier, France
| |
Collapse
|
23
|
Stachowiak M, Szczerbal I, Nowacka-Woszuk J, Jackowiak H, Sledzinski P, Iskrzak P, Dzimira S, Switonski M. Polymorphisms in the SOX9 region and testicular disorder of sex development (38,XX; SRY -negative) in pigs. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Szczerbal I, Stachowiak M, Nowacka-Woszuk J, Dzimira S, Szczepanska K, Switonski M. Disorder of sex development in a cat with chromosome mosaicism 37,X/38,X,r(Y). Reprod Domest Anim 2017; 52:914-917. [PMID: 28370681 DOI: 10.1111/rda.12968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
An 18-month-old European shorthair cat was subjected to genetic studies due to ambiguous external genitalia (underdeveloped both penis and scrotum). Further anatomic and histopathological studies revealed the presence of abdominal, atrophic testes and uterus. Cytogenetic analysis showed two cell lines, one with X monosomy-37,X [90% of the analysed metaphase spreads], and other line had 38 chromosomes with normal X chromosome and abnormally small Y-derived chromosome-38,X,der(Y) [10%]. Further fluorescence in situ hybridization study with telomeric probe revealed a ring structure of the der(Y). Eight Y chromosome-specific genes, SRY, TETY1, TETY2, CUL4BY, CYORF15, HSFY, FLJ36031Y and ZFY, were detected. We conclude that the described abnormality of the reproductive system, leading to sterility, was caused by a very rare type of chromosomal mosaicism-37,X/38,X,r(Y).
Collapse
Affiliation(s)
- I Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - M Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - J Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - S Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - M Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
25
|
Nowacka-Woszuk J, Szczerbal I, Pausch H, Hundi S, Hytönen MK, Grzemski A, Flisikowski K, Lohi H, Switonski M, Szydlowski M. Deep sequencing of a candidate region harboring theSOX9gene for the canine XX disorder of sex development. Anim Genet 2017; 48:330-337. [DOI: 10.1111/age.12538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- J. Nowacka-Woszuk
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| | - I. Szczerbal
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| | - H. Pausch
- Chair of Animal Breeding; Technische Universitat Munchen; Liesel-Beckmann-Straße 1; D-85354 Freising-Weihenstephan Germany
| | - S. Hundi
- Department of Veterinary Biosciences; University of Helsinki; Helsinki 00014 Finland
| | - M. K. Hytönen
- Department of Veterinary Biosciences; University of Helsinki; Helsinki 00014 Finland
| | - A. Grzemski
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| | - K. Flisikowski
- Chair of Livestock Biotechnology; Technische Universitat Munchen; Liesel-Beckmann-Straße 1; D-85354 Freising-Weihenstephan Germany
| | - H. Lohi
- Department of Veterinary Biosciences; University of Helsinki; Helsinki 00014 Finland
| | - M. Switonski
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| | - M. Szydlowski
- Department of Genetics and Animal Breeding; Poznan University of Life Sciences; Wolynska 33 60-637 Poznan Poland
| |
Collapse
|