1
|
Gokhman VE, Kuznetsova VG. Structure and Evolution of Ribosomal Genes of Insect Chromosomes. INSECTS 2024; 15:593. [PMID: 39194798 DOI: 10.3390/insects15080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them.
Collapse
Affiliation(s)
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Poisson W, Bastien A, Gilbert I, Carrier A, Prunier J, Robert C. Cytogenetic screening of a Canadian swine breeding nucleus using a newly developed karyotyping method named oligo-banding. Genet Sel Evol 2023; 55:47. [PMID: 37430194 DOI: 10.1186/s12711-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The frequency of chromosomal rearrangements in Canadian breeding boars has been estimated at 0.91 to 1.64%. These abnormalities are widely recognized as a potential cause of subfertility in livestock production. Since artificial insemination is practiced in almost all intensive pig production systems, the use of elite boars carrying cytogenetic defects that have an impact on fertility can lead to major economic losses. To avoid keeping subfertile boars in artificial insemination centres and spreading chromosomal defects within populations, cytogenetic screening of boars is crucial. Different techniques are used for this purpose, but several issues are frequently encountered, i.e. environmental factors can influence the quality of results, the lack of genomic information outputted by these techniques, and the need for prior cytogenetic skills. The aim of this study was to develop a new pig karyotyping method based on fluorescent banding patterns. RESULTS The use of 207,847 specific oligonucleotides generated 96 fluorescent bands that are distributed across the 18 autosomes and the sex chromosomes. Tested alongside conventional G-banding, this oligo-banding method allowed us to identify four chromosomal translocations and a rare unbalanced chromosomal rearrangement that was not detected by conventional banding. In addition, this method allowed us to investigate chromosomal imbalance in spermatozoa. CONCLUSIONS The use of oligo-banding was found to be appropriate for detecting chromosomal aberrations in a Canadian pig nucleus and its convenient design and use make it an interesting tool for livestock karyotyping and cytogenetic studies.
Collapse
Affiliation(s)
- William Poisson
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Alexandre Bastien
- Plateforme d'imagerie et microscopie, Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Julien Prunier
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada.
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada.
| |
Collapse
|
3
|
Dutrillaux B, Dutrillaux AM. Why Are X Autosome Rearrangements so Frequent in Beetles? A Study of 50 Cases. Genes (Basel) 2023; 14:150. [PMID: 36672891 PMCID: PMC9859168 DOI: 10.3390/genes14010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Amongst the 460 karyotypes of Polyphagan Coleoptera that we studied, 50 (10.8%) were carriers of an X autosome rearrangement. In addition to mitotic metaphase analysis, the correct diagnosis was performed on meiotic cells, principally at the pachytene stage. The percentages of these inter-chromosomal rearrangements, principally fusions, varied in relation to the total diploid number of chromosomes: high (51%) below 19, null at 19, low (2.7%) at 20 (the ancestral and modal number), and slightly increasing from 7.1% to 16.7% from 22 to above 30. The involvement of the X in chromosome fusions appears to be more than seven-fold higher than expected for the average of the autosomes. Examples of karyotypes with X autosome rearrangements are shown, including insertion of the whole X in the autosome (ins(A;X)), which has never been reported before in animals. End-to-end fusions (Robertsonian translocations, terminal rearrangements, and pseudo-dicentrics) are the most frequent types of X autosome rearrangements. As in the 34 species with a 19,X formula, there was no trace of the Y chromosome in the 50 karyotypes with an X autosome rearrangement, which demonstrates the dispensability of this chromosome. In most instances, C-banded heterochromatin was present at the X autosome junction, which suggests that it insulates the gonosome from the autosome portions, whose genes are subjected to different levels of expression. Finally, it is proposed that the very preferential involvement of the X in inter-chromosome rearrangements is explained by: (1) the frequent acrocentric morphology of the X, thus the terminal position of constitutive heterochromatin, which can insulate the attached gonosomal and autosomal components; (2) the dispensability of the Y chromosome, which considerably minimizes the deleterious consequences of the heterozygous status in male meiosis, (3) following the rapid loss of the useless Y chromosome, the correct segregation of the X autosome-autosome trivalent, which ipso facto is ensured by a chiasma in its autosomal portion.
Collapse
Affiliation(s)
- Bernard Dutrillaux
- Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205–CNRS, MNHN, EPHE, Sorbonne Université, 57 rue Cuvier CP50 F, 75005 Paris, France
| | | |
Collapse
|
4
|
Teixeira GA, de Aguiar HJAC, Petitclerc F, Orivel J, Lopes DM, Barros LAC. Evolutionary insights into the genomic organization of major ribosomal DNA in ant chromosomes. INSECT MOLECULAR BIOLOGY 2021; 30:340-354. [PMID: 33586259 DOI: 10.1111/imb.12699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The major rDNA genes are composed of tandem repeats and are part of the nucleolus organizing regions (NORs). They are highly conserved and therefore useful in understanding the evolutionary patterns of chromosomal locations. The evolutionary dynamics of the karyotype may affect the organization of rDNA genes within chromosomes. In this study, we physically mapped 18S rDNA genes in 13 Neotropical ant species from four subfamilies using fluorescence in situ hybridization. Furthermore, a survey of published rDNA cytogenetic data for 50 additional species was performed, which allowed us to detect the evolutionary patterns of these genes in ant chromosomes. Species from the Neotropical, Palearctic, and Australian regions, comprising a total of 63 species from 19 genera within six subfamilies, were analysed. Most of the species (48 out of 63) had rDNA genes restricted to a single chromosome pair in their intrachromosomal regions. The position of rDNA genes within the chromosomes appears to hinder their dispersal throughout the genome, as translocations and ectopic recombination are uncommon in intrachromosomal regions because they can generate meiotic abnormalities. Therefore, rDNA genes restricted to a single chromosome pair seem to be a plesiomorphic feature in ants, while multiple rDNA sites, observed in distinct subfamilies, may have independent origins in different genera.
Collapse
Affiliation(s)
- G A Teixeira
- Programa de Pós-graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Viçosa, Brazil
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - H J A C de Aguiar
- Universidade Federal do Amapá, Campus Binacional, BR 156, n° 3051, Bairro Universidade, Oiapoque, 68980-000, Brazil
| | - F Petitclerc
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - J Orivel
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - D M Lopes
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - L A C Barros
- Universidade Federal do Amapá, Campus Binacional, BR 156, n° 3051, Bairro Universidade, Oiapoque, 68980-000, Brazil
| |
Collapse
|
5
|
Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters. INSECTS 2021; 12:insects12050385. [PMID: 33925926 PMCID: PMC8146434 DOI: 10.3390/insects12050385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/12/2023]
Abstract
Simple Summary The family Meloidae contains approximately 3000 species, commonly known as blister beetles for their ability to secrete a substance called cantharidin, which causes irritation and blistering in contact with animal or human skin. In recent years there have been numerous studies focused on the anticancer action of cantharidin and its derivatives. Despite the recent interest in blister beetles, cytogenetic and molecular studies in this group are scarce and most of them use only classical chromosome staining techniques. The main aim of our study was to provide new information in Meloidae. In this study, cytogenetic and molecular analyses were applied for the first time in the family Meloidae. We applied fluorescence staining with DAPI and the position of ribosomal DNA in Hycleus scutellatus was mapped by FISH. Hycleus is one of the most species-rich genera of Meloidae but no cytogenetic data have yet been published for this particular genus. Additionally, we isolated a satellite DNA family located within the pericentromeric regions of all chromosomes. The results obtained in this study may be a suitable starting point to initiate more extensive cytogenetic analyses in this important species-rich genus, and in the family Meloidae in general. Abstract Meloidae are commonly known as blister beetles, so called for the secretion of cantharidin, a toxic substance that causes irritation and blistering. There has been a recent increase in the interest of the cantharidin anticancer potential of this insect group. Cytogenetic and molecular data in this group are scarce. In this study, we performed a karyotype analysis of Hycleus scutellatus, an endemic species of the Iberian Peninsula. We determined its chromosome number, 2n = 20, as well as the presence of the X and Y sex chromosomes. In addition to a karyotype analysis, we carried out DAPI staining. By fluorescence in situ hybridization we mapped the rDNA clusters on 12 different chromosomes. Compared to others, this species shows an unusually high number of chromosomes carrying rDNA. This is one of the highest numbers of rDNA sites found in the Polyphaga suborder (Coleoptera). Additionally, we isolated a satellite DNA family (Hyscu-H), which was located within the pericentromeric regions of all chromosomes, including the sex chromosomes. The results suggest that Hyscu-H is likely to be one of the most abundant satellite DNA repeats in H. scutellatus.
Collapse
|
6
|
Pentzold C, Kokal M, Pentzold S, Weise A. Sites of chromosomal instability in the context of nuclear architecture and function. Cell Mol Life Sci 2020; 78:2095-2103. [PMID: 33219838 PMCID: PMC7966619 DOI: 10.1007/s00018-020-03698-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
Chromosomal fragile sites are described as areas within the tightly packed mitotic chromatin that appear as breaks or gaps mostly tracing back to a loosened structure and not a real nicked break within the DNA molecule. Most facts about fragile sites result from studies in mitotic cells, mainly during metaphase and mainly in lymphocytes. Here, we synthesize facts about the genomic regions that are prone to form gaps and breaks on metaphase chromosomes in the context of interphase. We conclude that nuclear architecture shapes the activity profile of the cell, i.e. replication timing and transcriptional activity, thereby influencing genomic integrity during interphase with the potential to cause fragility in mitosis. We further propose fragile sites as examples of regions specifically positioned in the interphase nucleus with putative anchoring points at the nuclear lamina to enable a tightly regulated replication–transcription profile and diverse signalling functions in the cell. Consequently, fragility starts before the actual display as chromosomal breakage in metaphase to balance the initial contradiction of cellular overgrowth or malfunctioning and maintaining diversity in molecular evolution.
Collapse
Affiliation(s)
- Constanze Pentzold
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany.
| | - Miriam Kokal
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Stefan Pentzold
- Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| |
Collapse
|
7
|
Su D, Chen L, Sun J, Zhang L, Gao R, Li Q, Han Y, Li Z. Comparative Chromosomal Localization of 45S and 5S rDNA Sites in 76 Purple-Fleshed Sweet Potato Cultivars. PLANTS 2020; 9:plants9070865. [PMID: 32650507 PMCID: PMC7412053 DOI: 10.3390/plants9070865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
In recent years, the purple-fleshed sweet potato has attracted more attention because of its high nutritional value. The cytogenetics of this crop is relatively unexplored, limiting our knowledge on its genetic diversity. Therefore, we conducted cytogenetic analysis of 76 purple-fleshed sweet potato cultivars to analyze the chromosome structure and distribution of 45S and 5S rDNA. We noted that only 62 cultivars had 90 chromosomes, and the others were aneuploid with 88, 89, 91, or 92 chromosomes. The number of 45S rDNA in the 76 cultivars varied from 16 to 21; these sites showed different signal sizes and intensities and were localized at the chromosomal termini or satellite. The number of 5S rDNA was relatively stable; 74 cultivars showed six sites located at the chromosomal sub-terminal or near the centromere. Only the ‘Quanzishu 96’ and ‘Yuzixiang 10’ showed seven and five 5S rDNA sites, respectively. Additionally, both parent cultivars of ‘Quanzishu 96’ showed 18 45S and six 5S rDNA sites. Overall, our results indicate a moderate diversity in the distribution pattern of rDNAs. Our findings provide comprehensive cytogenetic information for the identification of sweet potato chromosomes, which can be useful for developing a high-quality germplasm resource.
Collapse
Affiliation(s)
- Dan Su
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Lei Chen
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Jianying Sun
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Luyue Zhang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Runfei Gao
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221100, China; (R.G.); (Q.L.)
| | - Qiang Li
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221100, China; (R.G.); (Q.L.)
| | - Yonghua Han
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
- Correspondence: (Y.H.); (Z.L.); Tel.: +86-0516-8350-0083 (Y.H. & Z.L.)
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
- Correspondence: (Y.H.); (Z.L.); Tel.: +86-0516-8350-0083 (Y.H. & Z.L.)
| |
Collapse
|
8
|
Chromosome Dynamics Regulating Genomic Dispersion and Alteration of Nucleolus Organizer Regions (NORs). Cells 2020; 9:cells9040971. [PMID: 32326514 PMCID: PMC7227013 DOI: 10.3390/cells9040971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleolus organizer regions (NORs) demonstrate differences in genomic dispersion and transcriptional activity among all organisms. I postulate that such differences stem from distinct genomic structures and their interactions from chromosome observations using fluorescence in situ hybridization and silver nitrate staining methods. Examples in primates and Australian bulldog ants indicate that chromosomal features indeed play a significant role in determining the properties of NORs. In primates, rDNA arrays that are located on the short arm of acrocentrics frequently form reciprocal associations ("affinity"), but they lack such associations ("non-affinity") with other repeat arrays-a binary molecular effect. These "rules" of affinity vs. non-affinity are extrapolated from the chromosomal configurations of meiotic prophase. In bulldog ants, genomic dispersions of rDNA loci expand much more widely following an increase in the number of acrocentric chromosomes formed by centric fission. Affinity appears to be a significantly greater force: associations likely form among rDNA and heterochromatin arrays of acrocentrics-thus, more acrocentrics bring about more rDNA loci. The specific interactions among NOR-related genome structures remain unclear and require further investigation. Here, I propose that there are limited and non-limited genomic dispersion systems that result from genomic affinity rules, inducing specific chromosomal configurations that are related to NORs.
Collapse
|
9
|
The Case of X and Y Localization of Nucleolus Organizer Regions (NORs) in Tragulus javanicus (Cetartiodactyla, Mammalia). Genes (Basel) 2018; 9:genes9060312. [PMID: 29925822 PMCID: PMC6027365 DOI: 10.3390/genes9060312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022] Open
Abstract
There are differences in number and localization of nucleolus organizer regions (NORs) in genomes. In mammalian genomes, NORs are located on autosomes, which are often situated on short arms of acrocentric chromosomes and more rarely in telomeric, pericentromeric, or interstitial regions. In this work, we report the unique case of active NORs located on gonоsomes of a eutherian mammal, the Javan mouse-deer (Tragulus javanicus). We have investigated the position of NORs by FISH experiments with ribosomal DNA (rDNA) sequences (18S, 5.8S, and 28S) and show the presence of a single NOR site on the X and Y chromosomes. The NOR is localized interstitially on the p-arm of the X chromosome in close proximity with prominent C-positive heterochromatin blocks and in the pericentromeric area of mostly heterochromatic Y. The NOR sites are active on both the X and Y chromosomes in the studied individual and surrounded by GC enriched heterochromatin. We hypothesize that the surrounding heterochromatin might have played a role in the transfer of NORs from autosomes to sex chromosomes during the karyotype evolution of the Javan mouse-deer.
Collapse
|