1
|
da Luz MJ, da Costa VAA, Balbi APC, Bispo-da-Silva LB. Effects of Disodium Cromoglycate Treatment in the Early Stage of Diabetic Nephropathy: Focus on Collagen Deposition. Biol Pharm Bull 2022; 45:245-249. [PMID: 35228391 DOI: 10.1248/bpb.b21-00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is part of the pathophysiology of diabetic nephropathy (DN), and mast cells (MCs) appear to increase in number within the kidney of humans and animals with diabetes. Disodium cromoglycate (CG) not only inhibits the degranulation of MCs but also has several secondary effects that may improve inflammation. However, little is known about the effects of CG treatment on kidney collagen deposition and myofibroblast population in animals with type I diabetes (DM1). Data presented here suggest that the increases in the density and activity of MCs within the kidney in the early stages of DN contribute to tubulointerstitial collagen deposition, even in the absence of alterations in the renal myofibroblast population. Moreover, CG treatment showed renoprotective effects in rats with DM1, which appear to be linked to its mast cell stabilizing property and its ability to avoid some detrimental morphofunctional alterations.
Collapse
Affiliation(s)
- Mateus Jacinto da Luz
- Department of Pharmacology, Institute of Biomedical Sciences, Federal University of Uberlândia, ICBIM-UFU
| | | | - Ana Paula Coelho Balbi
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, ICBIM-UFU
| | - Luiz Borges Bispo-da-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, Federal University of Uberlândia, ICBIM-UFU
| |
Collapse
|
2
|
Marchini GS, Cestari IN, Salemi VMC, Irigoyen MC, Arnold A, Kakoi A, Rocon C, Aiello VD, Cestari IA. Early changes in myocyte contractility and cardiac function in streptozotocin-induced type 1 diabetes in rats. PLoS One 2020; 15:e0237305. [PMID: 32822421 PMCID: PMC7442260 DOI: 10.1371/journal.pone.0237305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes can elicit direct deleterious effects on the myocardium, independent of coronary artery disease or hypertension. These cardiac disturbances are termed diabetic cardiomyopathy showing increased risk of heart failure with or without reduced ejection fraction. Presently, there is no specific treatment for this type of cardiomyopathy and in the case of type I diabetes, it may start in early childhood independent of glycemic control. We hypothesized that alterations in isolated myocyte contractility and cardiac function are present in the early stages of experimental diabetes in rats before overt changes in myocardium structure occur. Diabetes was induced by single-dose injection of streptozotocin (STZ) in rats with data collected from control and diabetic animals 3 weeks after injection. Left ventricle myocyte contractility was measured by single-cell length variation under electrical stimulation. Cardiac function and morphology were studied by high-resolution echocardiography with pulsed-wave tissue Doppler imaging (TDI) measurements and three-lead surface electrocardiogram. Triglycerides, cholesterol and liver enzyme levels were measured from plasma samples obtained from both groups. Myocardial collagen content and perivascular fibrosis of atria and ventricle were studied by histological analysis after picrosirius red staining. Diabetes resulted in altered contractility of isolated cardiac myocytes with increased contraction and relaxation time intervals. Echocardiography showed left atrium dilation, increased end-diastolic LV and posterior wall thickness, with reduced longitudinal systolic peak velocity (S’) of the septum mitral annulus at the apical four-chamber view obtained by TDI. Triglycerides, aspartate aminotransferase and alkaline phosphatase were elevated in diabetic animals. Intertitial collagen content was higher in atria of both groups and did not differ among control and diabetic animals. Perivascular intramyocardial arterioles collagen did not differ between groups. These results suggest that alterations in cardiac function are present in the early phase in this model of diabetes type 1 and occur before overt changes in myocardium structure appear as evaluated by intersticial collagen deposition and perivascular fibrosis of intramyocardial arterioles.
Collapse
Affiliation(s)
- Gustavo S. Marchini
- Biomedical Engineering Graduate Progam, University of São Paulo Polytechnic School, São Paulo, Brazil
| | - Ismar N. Cestari
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Vera M. C. Salemi
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | | | - Alexandre Arnold
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Adélia Kakoi
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Camila Rocon
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Vera D. Aiello
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
| | - Idágene A. Cestari
- Biomedical Engineering Graduate Progam, University of São Paulo Polytechnic School, São Paulo, Brazil
- Heart Institute-InCor University of São Paulo Medical School, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
3
|
Wang Y, Lu YH, Tang C, Xue M, Li XY, Chang YP, Cheng Y, Li T, Yu XC, Sun B, Li CJ, Chen LM. Calcium Dobesilate Restores Autophagy by Inhibiting the VEGF/PI3K/AKT/mTOR Signaling Pathway. Front Pharmacol 2019; 10:886. [PMID: 31447680 PMCID: PMC6696883 DOI: 10.3389/fphar.2019.00886] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
Objective: Calcium dobesilate (CaD), an effective drug for the treatment of diabetic microvascular complications, especially diabetic retinopathy, is widely used in the clinic. Interestingly, several studies have indicated that CaD is therapeutic for diabetic kidney disease (DKD). Recently, evidence has indicated that altered vascular endothelial growth factor (VEGF) expression and decreased autophagy are the main pathological mechanisms of proteinuria. Thus, this study was conducted to explore the effect of CaD on restoring autophagy in DKD and the possible signaling pathway between VEGF and autophagy. Methods: Obese mice with spontaneous diabetes (KK-Ay) and high-fat diet- and streptozotocin-induced diabetic mice (HFD/STZ) were used in this study. Biochemical staining, western blotting, and immunohistochemistry were conducted to determine the angioprotective effect of CaD and the underlying mechanism between autophagy and VEGF/VEGFR. Results: Our results showed that CaD was capable of reducing albuminuria and restoring renal histological changes in KK-Ay and HFD/STZ-induced diabetic mice. CaD restored autophagy by decreasing the protein expression of LC3 II, Atg5, and beclin 1 and increasing the expression of P62. Moreover, CaD reduced the activation of the autophagy-related PI3K/AKT/mTOR pathway possibly via decreasing VEGF and downregulating VEGF receptor 2. Conclusion: Overall, CaD, as a novel potential therapeutic drug for DKD, plays a key role in protecting renal function and restoring autophagy by blocking VEGF/VEGFR2 and inhibiting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yue Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Yun-Hong Lu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Chao Tang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Mei Xue
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Xiao-Yu Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Yun-Peng Chang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Ying Cheng
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Xiao-Chen Yu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Chun-Jun Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| | - Li-Ming Chen
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
4
|
NLRP3 Inflammasome Modulation by Melatonin Supplementation in Chronic Pristane-Induced Lupus Nephritis. Int J Mol Sci 2019; 20:ijms20143466. [PMID: 31311094 PMCID: PMC6678949 DOI: 10.3390/ijms20143466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Lupus nephritis (LN) is a kidney inflammatory disease caused by systemic lupus erythematosus (SLE). NLRP3 inflammasome activation is implicated in LN pathogenesis, suggesting its potential targets for LN treatment. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule that has been reported to have anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-κB)-mediated inflammatory responses in vivo. This molecule has also protective effects against the activation of the inflammasomes and, in particular, the NLRP3 inflammasome. Thus, this work evaluated the effect of melatonin on morphological alteration and NLRP3 inflammasome activation in LN pristane mouse models. To evaluate the melatonin effects in these mice, we studied the renal cytoarchitecture by means of morphological analyses and immunohistochemical expression of specific markers related to oxidative stress, inflammation and inflammasome activation. Our results showed that melatonin attenuates pristane-induced LN through restoring of morphology and attenuation of oxidative stress and inflammation through a pathway that inhibited activation of NLRP3 inflammasome signaling. Our data clearly demonstrate that melatonin has protective activity on lupus nephritis in these mice that is highly associated with its effect on enhancing the Nrf2 antioxidant signaling pathway and decreasing renal NLRP3 inflammasome activation.
Collapse
|
5
|
Akbas F. PROTECTIVE EFFECT OF INSULIN TREATMENT ON EARLY RENAL CHANGES IN STREPTOZOTOCIN-INDUCED DIABETIC RATS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:169-174. [PMID: 31149254 PMCID: PMC6516527 DOI: 10.4183/aeb.2018.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Chronic kidney disease is a progressive complication of diabetes mellitus (DM). This study aimed to analyse early renal changes in streptozotocin induced diabetic rats and demonstrate the effect of early treatment with insulin on kidney's histology. METHODS 30 male-adult Sprague-Dawley rats were included in the study. Diabetes was induced in 24 of the rats by a single injection of 65 mg/kg streptozotocin dissolved in saline. 5 units/day NPH insulin injection was started to 10 rats as treatment group and 11 rats were followed untreated. 6 rats constituted the control group. Induction of diabetes failed in 3 animals and 3 untreated rats died during the study. After 21 days, all rats were sacrificed and their kidneys were removed to obtain histological sections to be evaluated by light microscopy. RESULTS Ten treated and 8 untreated diabetic rats and 6 healthy controls, totally 24 rats completed the study. There was a significant weight loss in treated and untreated diabetic groups and a weight gain in the control group (p<0.05). Final blood glucose levels were significantly higher in untreated diabetic group when compared to treated diabetic and control groups and higher in treated diabetic group when compared to control group. Histological analysis of kidney sections showed normal morphology in control group. Changes like increased mesangium, tubular atrophy and tubules with dilated lumen and irregular cell shapes were found in the untreated group whereas, glomerulus and mesangium showed similar morphology with control group with a few changes in tubules, in insulin-treated group. CONCLUSION In DM, renal changes start at an early point and it is possible to prevent/delay those changes at this point with early intervention of insulin treatment.
Collapse
Affiliation(s)
- F. Akbas
- Istanbul Training and Research Hospital, Dept. of Internal Medicine, Samatya, Istanbul, Turkey
| |
Collapse
|
6
|
Mongelli-Sabino BM, Canuto LP, Collares-Buzato CB. Acute and chronic exposure to high levels of glucose modulates tight junction-associated epithelial barrier function in a renal tubular cell line. Life Sci 2017; 188:149-157. [PMID: 28882647 DOI: 10.1016/j.lfs.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/13/2023]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases worldwide. Diabetic nephropathy (DN) is a complication of diabetes and the mechanisms underlying onset and progression of this disease are not fully understood. It has been shown that hyperglycemia is an independent factor to predict the development of DN in individuals with T2DM, however, a link between high plasma glucose levels and renal tubular injuries in DN remains unknown. In this study, we investigated the effect of high levels of glucose (i.e. 180 or 360mg/dL) for up to 24h (acute) or over 72h (chronic) upon tight junction (TJ)-mediated epithelial barrier integrity of the kidney tubular cell line, MDCK. METHODS/KEY FINDINGS High levels of glucose (180 and 360mg/dL) induced a decrease in transepithelial electrical resistance associated with an increase in TJ cation selectivity at 24h or in TJ permeability to a paracellular marker, Lucifer Yellow, at 72h-exposure when compared to control group (exposed to 100mg/dL glucose). Immunofluorescence analyses showed that glucose treatment induced a significant decrease in the tight junctional content of claudins-1 and -3 as well as a significant increase in claudin-2 (particularly at 24h-exposure) and a time-dependent change in occludin/ZO-1 junctional content. The analyses of total cell content of these junctional proteins by Western blot did not reveal significant changes, except in claudin-2 expression. SIGNIFICANCE Our data suggest that high levels of glucose induce time-dependence changes in TJ structure in MDCK monolayers, suggesting a possible link between hyperglycemia-induced tubular epithelial barrier disruption and diabetic nephropathy.
Collapse
Affiliation(s)
- B M Mongelli-Sabino
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - L P Canuto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - C B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|