1
|
Piferrer F, Anastasiadi D. Do the Offspring of Sex Reversals Have Higher Sensitivity to Environmental Perturbations? Sex Dev 2021; 15:134-147. [PMID: 33910195 DOI: 10.1159/000515192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
Sex determination systems in vertebrates vary along a continuum from genetic (GSD) to environmental sex determination (ESD). Individuals that show a sexual phenotype opposite to their genotypic sex are called sex reversals. Aside from genetic elements, temperature, sex steroids, and exogenous chemicals are common factors triggering sex reversal, a phenomenon that may occur even in strict GSD species. In this paper, we review the literature on instances of sex reversal in fish, amphibians, reptiles, birds, and mammals. We focus on the offspring of sex-reversed parents in the instances that they can be produced, and show that in all cases studied the offspring of these sex-reversed parents exhibit a higher sensitivity to environmental perturbations than the offspring of non-sex-reversed parents. We suggest that the inheritance of this sensitivity, aside from possible genetic factors, is likely to be mediated by epigenetic mechanisms such as DNA methylation, since these mechanisms are responsive to environmental cues, and epigenetic modifications can be transmitted to the subsequent generations. Species with a chromosomal GSD system with environmental sensitivity and availability of genetic sex markers should be employed to further test whether offspring of sex-reversed parents have greater sensitivity to environmental perturbations. Future studies could also benefit from detailed whole-genome data in order to elucidate the underlying molecular mechanisms. Finally, we discuss the consequences of such higher sensitivity in the context of global climate change.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
2
|
Dai S, Qi S, Wei X, Liu X, Li Y, Zhou X, Xiao H, Lu B, Wang D, Li M. Germline sexual fate is determined by the antagonistic action of dmrt1 and foxl3/foxl2 in tilapia. Development 2021; 148:dev.199380. [PMID: 33741713 DOI: 10.1242/dev.199380] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
Germline sexual fate has long been believed to be determined by the somatic environment, but this idea is challenged by recent studies of foxl3 mutants in medaka. Here, we demonstrate that the sexual fate of tilapia germline is determined by the antagonistic interaction of dmrt1 and foxl3, which are transcriptionally repressed in male and female germ cells, respectively. Loss of dmrt1 rescued the germ cell sex reversal in foxl3Δ7/Δ7 XX fish, and loss of foxl3 partially rescued germ cell sex reversal but not somatic cell fate in dmrt1Δ5/Δ5 XY fish. Interestingly, germ cells lost sexual plasticity in dmrt1Δ5/Δ5 XY and foxl3Δ7/Δ7 XX single mutants, as aromatase inhibitor (AI) and estrogen treatment failed to rescue the respective phenotypes. However, recovery of germ cell sexual plasticity was observed in dmrt1/foxl3 double mutants. Importantly, mutation of somatic cell-specific foxl2 resulted in testicular development in foxl3Δ7/Δ7 or dmrt1Δ5/Δ5 mutants. Our findings demonstrate that sexual plasticity of germ cells relies on the presence of both dmrt1 and foxl3. The existence of dmrt1 and foxl3 allows environmental factors to influence the sex fate decision in vertebrates.
Collapse
Affiliation(s)
- Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shuangshuang Qi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xueyan Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yibing Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Stadler HS, Peters CA, Sturm RM, Baker LA, Best CJM, Bird VY, Geller F, Hoshizaki DK, Knudsen TB, Norton JM, Romao RLP, Cohn MJ. Meeting report on the NIDDK/AUA Workshop on Congenital Anomalies of External Genitalia: challenges and opportunities for translational research. J Pediatr Urol 2020; 16:791-804. [PMID: 33097421 PMCID: PMC7885182 DOI: 10.1016/j.jpurol.2020.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/02/2023]
Abstract
Congenital anomalies of the external genitalia (CAEG) are a prevalent and serious public health concern with lifelong impacts on the urinary function, sexual health, fertility, tumor development, and psychosocial wellbeing of affected individuals. Complications of treatment are frequent, and data reflecting long-term outcomes in adulthood are limited. To identify a path forward to improve treatments and realize the possibility of preventing CAEG, the National Institute of Diabetes and Digestive and Kidney Diseases and the American Urological Association convened researchers from a range of disciplines to coordinate research efforts to fully understand the different etiologies of these common conditions, subsequent variation in clinical phenotypes, and best practices for long term surgical success. Meeting participants concluded that a central data hub for clinical evaluations, including collection of DNA samples from patients and their parents, and short interviews to determine familial penetrance (small pedigrees), would accelerate research in this field. Such a centralized datahub will advance efforts to develop detailed multi-dimensional phenotyping and will enable access to genome sequence analyses and associated metadata to define the genetic bases for these conditions. Inclusion of tissue samples and integration of clinical studies with basic research using human cells and animal models will advance efforts to identify the developmental mechanisms that are disrupted during development and will add cellular and molecular granularity to phenotyping CAEG. While the discussion focuses heavily on hypospadias, this can be seen as a potential template for other conditions in the realm of CAEG, including cryptorchidism or the exstrophy-epispadias complex. Taken together with long-term clinical follow-up, these data could inform surgical choices and improve likelihood for long-term success.
Collapse
Affiliation(s)
- H Scott Stadler
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR, Oregon Health & Science University, Department of Orthopaedics and Rehabilitation, Portland, 97239, OR, USA.
| | - Craig A Peters
- Department of Urology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, 75390-9110, TX, USA; Pediatric Urology, Children's Health System Texas, University of Texas Southwestern, Dallas, 75390, TX, USA.
| | - Renea M Sturm
- Department of Urology, Division of Pediatric Urology, University of California Los Angeles, 200 Medical Plaza #170, Los Angeles, 90095, CA, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, 75390-9110, TX, USA
| | - Carolyn J M Best
- American Urological Association, 1000 Corporate Boulevard, Linthicum, 21090, MD, USA
| | - Victoria Y Bird
- Department of Urology, University of Florida, Gainesville, 32610, FL, USA; National Medical Association and Research Group, 5745 SW 75th Street, #507, Gainesville, 32608, FL, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, 5 Artillerivej, Copenhagen S, DK-2300, Denmark
| | - Deborah K Hoshizaki
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, 20892, MD, USA
| | - Thomas B Knudsen
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, 27711, NC, USA
| | - Jenna M Norton
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, 20892, MD, USA
| | - Rodrigo L P Romao
- Departments of Surgery and Urology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, Department of Biology, And UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, 32610, FL, USA.
| |
Collapse
|
4
|
Rago A, Werren JH, Colbourne JK. Sex biased expression and co-expression networks in development, using the hymenopteran Nasonia vitripennis. PLoS Genet 2020; 16:e1008518. [PMID: 31986136 PMCID: PMC7004391 DOI: 10.1371/journal.pgen.1008518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/06/2020] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Sexual dimorphism requires regulation of gene expression in developing organisms. These developmental differences are caused by differential expression of genes and isoforms. The effect of expressing a gene is also influenced by which other genes are simultaneously expressed (functional interactions). However, few studies have described how these processes change across development. We compare the dynamics of differential expression, isoform switching and functional interactions in the sexual development of the model parasitoid wasp Nasonia vitripennis, a system that permits genome wide analysis of sex bias from early embryos to adults. We find relatively little sex-bias in embryos and larvae at the gene level, but several sub-networks show sex-biased functional interactions in early developmental stages. These networks provide new candidates for hymenopteran sex determination, including histone modification. In contrast, sex-bias in pupae and adults is driven by the differential expression of genes. We observe sex-biased isoform switching consistently across development, but mostly in genes that are already differentially expressed. Finally, we discover that sex-biased networks are enriched by genes specific to the Nasonia clade, and that those genes possess the topological properties of key regulators. These findings suggest that regulators in sex-biased networks evolve more rapidly than regulators of other developmental networks.
Collapse
Affiliation(s)
- Alfredo Rago
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - John K. Colbourne
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|