1
|
Gerstl JVE, Kiseleva A, Imbach L, Sarnthein J, Fedele T. High frequency oscillations in relation to interictal spikes in predicting postsurgical seizure freedom. Sci Rep 2023; 13:21313. [PMID: 38042925 PMCID: PMC10693609 DOI: 10.1038/s41598-023-48764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/30/2023] [Indexed: 12/04/2023] Open
Abstract
We evaluate whether interictal spikes, epileptiform HFOs and their co-occurrence (Spike + HFO) were included in the resection area with respect to seizure outcome. We also characterise the relationship between high frequency oscillations (HFOs) and propagating spikes. We analysed intracranial EEG of 20 patients that underwent resective epilepsy surgery. The co-occurrence of ripples and fast ripples was considered an HFO event; the co-occurrence of an interictal spike and HFO was considered a Spike + HFO event. HFO distribution and spike onset were compared in cases of spike propagation. Accuracy in predicting seizure outcome was 85% for HFO, 60% for Spikes, and 79% for Spike + HFO. Sensitivity was 57% for HFO, 71% for Spikes and 67% for Spikes + HFO. Specificity was 100% for HFO, 54% for Spikes and 85% for Spikes + HFO. In 2/2 patients with spike propagation, the spike onset included the HFO area. Combining interictal spikes with HFO had comparable accuracy to HFO. In patients with propagating spikes, HFO rate was maximal at the onset of spike propagation.
Collapse
Affiliation(s)
- Jakob V E Gerstl
- University College London Medical School, London, UK
- Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Alina Kiseleva
- Institute for Cognitive Neuroscience, HSE University, Myasnitskaya Ulitsa, 20, Moscow, Russian Federation, 101000
| | - Lukas Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tommaso Fedele
- Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland.
- Institute for Cognitive Neuroscience, HSE University, Myasnitskaya Ulitsa, 20, Moscow, Russian Federation, 101000.
| |
Collapse
|
2
|
Baltus C, El M’Kaddem B, Ferrao Santos S, Ribeiro Vaz JG, Raftopoulos C. Second surgery after vertical paramedian hemispherotomy for epilepsy recurrence. Heliyon 2023; 9:e14326. [PMID: 36950565 PMCID: PMC10025104 DOI: 10.1016/j.heliyon.2023.e14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/02/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
Background Vertical Paramedian Hemispherotomy (VPH) is considered an effective surgical treatment for drug-resistant epilepsy with 80% of patients experiencing seizure freedom or worthwhile improvement. Identifying persistent connective tracts is challenging in failed VPH. Methods We reviewed our series of consecutive patients undergoing VPH for hemispheric drug-resistant epilepsy and included cases with recurrent epileptic seizures undergoing second surgery with at least 6 months of postoperative follow-up. The cases were extensively assessed to propose a targeted complementary resection. Results Two children suffering from seizure recurrence following hemispherotomy leading to second surgery were included. After complete assessment, persisting amygdala residue was suspected responsible for the epilepsy recurrence in both patients. Complementary resection of the amygdala residue led to seizure freedom for both patients (Engel IA/ILAE Class 1) without complication. Different diagnostic tools are used to assess patients after failed hemispherotomy including routine EEG, prolonged video EEG, MRI (particularly DTI sequences), SPECT or PET scans and clinical evaluation. These tools allow to rule out epileptic foci in the contralateral hemisphere and to localize a potentially persisting epileptogenic zone. Assessment of these patients should be as systematic and integrated as the initial workup. Although our two patients suffered from Rasmussen's encephalitis, seizure recurrence after VPH has been described in other pathologies. Conclusion Lying deep and medially in the surgical corridor of VPH, the amygdala can be incompletely resected and cause recurrent epilepsy. Complementary selective resection of the amygdala residue may safely lead to success in epilepsy control.
Collapse
Affiliation(s)
- Cedric Baltus
- Department of Neurosurgery, University Hospital St-Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200, Brussels, Belgium
| | - Bouchra El M’Kaddem
- Department of Pediatric Neurology, University Hospital St-Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200, Brussels, Belgium
| | - Susana Ferrao Santos
- Refractory Epilepsy Center, University Hospital St-Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200, Brussels, Belgium
| | - José Géraldo Ribeiro Vaz
- Department of Neurosurgery, University Hospital St-Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200, Brussels, Belgium
| | - Christian Raftopoulos
- Department of Neurosurgery, University Hospital St-Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200, Brussels, Belgium
- Corresponding author.
| |
Collapse
|
3
|
Chee K, Razmara A, Geller AS, Harris WB, Restrepo D, Thompson JA, Kramer DR. The role of the piriform cortex in temporal lobe epilepsy: A current literature review. Front Neurol 2022; 13:1042887. [PMID: 36479052 PMCID: PMC9720270 DOI: 10.3389/fneur.2022.1042887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy is the most common form of focal epilepsy and can have various detrimental consequences within many neurologic domains. Recent evidence suggests that the piriform cortex may also be implicated in seizure physiology. The piriform cortex is a primary component of the olfactory network and is located at the junction of the frontal and temporal lobes, wrapping around the entorhinal sulcus. Similar to the hippocampus, it is a tri-layered allocortical structure, with connections to many adjacent regions including the orbitofrontal cortex, amygdala, peri- and entorhinal cortices, and insula. Both animal and human studies have implicated the piriform cortex as a critical node in the temporal lobe epilepsy network. It has additionally been shown that resection of greater than half of the piriform cortex may significantly increase the odds of achieving seizure freedom. Laser interstitial thermal therapy has also been shown to be an effective treatment strategy with recent evidence hinting that ablation of the piriform cortex may be important for seizure control as well. We propose that sampling piriform cortex in intracranial stereoelectroencephalography (sEEG) procedures with the use of a temporal pole or amygdalar electrode would be beneficial for further understanding the role of the piriform cortex in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Keanu Chee
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashkaun Razmara
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Aaron S Geller
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - William B Harris
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diego Restrepo
- Department of Developmental and Cell Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel R Kramer
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Schaller K, Iannotti GR, Orepic P, Betka S, Haemmerli J, Boex C, Alcoba-Banqueri S, Garin DFA, Herbelin B, Park HD, Michel CM, Blanke O. The perspectives of mapping and monitoring of the sense of self in neurosurgical patients. Acta Neurochir (Wien) 2021; 163:1213-1226. [PMID: 33686522 PMCID: PMC8053654 DOI: 10.1007/s00701-021-04778-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Surgical treatment of tumors, epileptic foci or of vascular origin, requires a detailed individual pre-surgical workup and intra-operative surveillance of brain functions to minimize the risk of post-surgical neurological deficits and decline of quality of life. Most attention is attributed to language, motor functions, and perception. However, higher cognitive functions such as social cognition, personality, and the sense of self may be affected by brain surgery. To date, the precise localization and the network patterns of brain regions involved in such functions are not yet fully understood, making the assessment of risks of related post-surgical deficits difficult. It is in the interest of neurosurgeons to understand with which neural systems related to selfhood and personality they are interfering during surgery. Recent neuroscience research using virtual reality and clinical observations suggest that the insular cortex, medial prefrontal cortex, and temporo-parietal junction are important components of a neural system dedicated to self-consciousness based on multisensory bodily processing, including exteroceptive and interoceptive cues (bodily self-consciousness (BSC)). Here, we argue that combined extra- and intra-operative approaches using targeted cognitive testing, functional imaging and EEG, virtual reality, combined with multisensory stimulations, may contribute to the assessment of the BSC and related cognitive aspects. Although the usefulness of particular biomarkers, such as cardiac and respiratory signals linked to virtual reality, and of heartbeat evoked potentials as a surrogate marker for intactness of multisensory integration for intra-operative monitoring has to be proved, systemic and automatized testing of BSC in neurosurgical patients will improve future surgical outcome.
Collapse
Affiliation(s)
- Karl Schaller
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Giannina Rita Iannotti
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University Geneva, Geneva, Switzerland
| | - Pavo Orepic
- Laboratory of Neurocognitive Science, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Sophie Betka
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
- Laboratory of Neurocognitive Science, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Julien Haemmerli
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland.
| | - Colette Boex
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
- Department of Clinical Neurosciences, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sixto Alcoba-Banqueri
- Laboratory of Neurocognitive Science, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Dorian F A Garin
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Bruno Herbelin
- Laboratory of Neurocognitive Science, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Hyeong-Dong Park
- Laboratory of Neurocognitive Science, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University Geneva, Geneva, Switzerland
| | - Olaf Blanke
- Laboratory of Neurocognitive Science, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Geneva University Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Bartoli A, El Hassani Y, Jenny B, Momjian S, Korff CM, Seeck M, Vulliemoz S, Schaller K. What to do in failed hemispherotomy? Our clinical series and review of the literature. Neurosurg Rev 2017; 41:125-132. [DOI: 10.1007/s10143-017-0888-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|