1
|
Voggel S, Abele M, Seitz C, Agaimy A, Vokuhl C, Dirksen U, Bier A, Flaadt T, Classen CF, Claviez A, Schneider DT, Brecht IB. Primary lung carcinoma in children and adolescents - Clinical characteristics and outcome of 12 cases from the German registry for rare paediatric tumours (STEP). Lung Cancer 2021; 160:66-72. [PMID: 34418863 DOI: 10.1016/j.lungcan.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Primary lung carcinomas are very rare paediatric tumours with an incidence of < 2/1.000.000 per year. They are clinically and histologically heterogeneous, and there are no therapeutic guidelines for this age group. Therefore, they represent a challenge for treating physicians. This analysis was performed to expand knowledge on characteristics, treatment and prognosis of primary lung carcinoma in paediatric patients. MATERIAL AND METHODS Between 2009 and 2019, twelve children and adolescents with lung carcinoma were identified in the prospective German registry for rare paediatric tumours (STEP). Data were analysed for histopathological entities, symptoms, diagnostics, therapy, clinical course and outcome. RESULTS Mucoepidermoid carcinoma (MEC) was the most frequent entity (n = 7), followed by adenocarcinoma (n = 2), squamous cell carcinoma (SCC; n = 2) and adenosquamous carcinoma (n = 1). Patients presented with non-specific symptoms and often, they were initially mistreated for airway infections. Patients with MEC showed no metastases and were successfully treated with complete resection. Patients with adenocarcinoma and SCC were older than 16 years of age at diagnosis. While patients with SCC presented with distant metastases and died within one year after diagnosis, those with adenocarcinoma and adenosquamous carcinoma achieved complete remission after multimodal treatment. CONCLUSIONS Presenting symptoms of lung carcinomas are unspecific and therefore, diagnostic evaluation and treatment are difficult. In the absence of carcinogen exposure, etiology seems to differ from adult lung carcinoma. Children diagnosed with MEC face a favourable outcome. In contrast, patients with prognostically unfavourable adenocarcinoma and SCC might benefit from molecular profiling and targeted therapies. International collaboration for the establishment of treatment protocols adjusted for distinct features of primary lung carcinoma in childhood is essential.
Collapse
Affiliation(s)
- Sarah Voggel
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany
| | - Michael Abele
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany
| | - Christian Seitz
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Germany
| | - Christian Vokuhl
- Section of Paediatric Pathology, Institute of Pathology, University Hospital Bonn, Germany
| | - Uta Dirksen
- Paediatrics III, West German Cancer Centre Essen, University Hospital Essen, Germany
| | - Andrea Bier
- Department of Pneumology, University Hospital Rostock, Germany
| | - Tim Flaadt
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany
| | - Carl F Classen
- Paediatric Haematology/Oncology/Immunology, Department of Paediatrics, University Hospital Rostock, Germany
| | - Alexander Claviez
- Department of Paediatrics, Schleswig-Holstein Medical University in Kiel, Kiel, Germany
| | | | - Ines B Brecht
- Paediatric Haematology/Oncology, Department of Paediatrics, University Hospital Tuebingen, Germany.
| |
Collapse
|
2
|
Wright SJ, Daker-White G, Newman W, Payne K. Understanding barriers to the introduction of precision medicine in non-small cell lung cancer: a qualitative interview study. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16528.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: While treatments targeting genetic mutations and alterations in non-small cell lung cancer (NSCLC) have been available since 2010, the adoption of such examples of precision medicine into clinical practice has historically been slow. This means that patients with NSCLC may not have received life improving and extending treatments which should have been available to them. The purpose of this qualitative interview study was to identify the barriers to the provision of examples of precision medicine for NSCLC. Methods: This study used semi-structured telephone interviews with clinicians, test providers and service commissioners to identify the perceived barriers to providing historical, current, and future examples of precision medicine in NSCLC. Participants were identified through mailing list advertisements and snowball sampling. The qualitative data was analysed using a framework analysis. Results: Interviews were conducted with 11 participants including: five oncologists; three pathologists; two clinical geneticists; and one service commissioner. A total of 17 barriers to the introduction of precision medicine for NSCLC were identified and these were grouped into five themes: the regulation of precision medicine and tests; the commissioning and reimbursement of tests and the testing process; the complexity of the logistics around providing tests; centralisation or localisation of test provision; and opinions about future developments in precision medicine for NSCLC. Conclusions: A number of barriers exist to the introduction of precision medicine in NSCLC. Addressing these barriers may improve access to novel life improving and extending treatments for patients.
Collapse
|
3
|
Sidhom E, O'Brien J, Underwood BR. The application of stratified medicine to dementia care. BJPSYCH ADVANCES 2020. [DOI: 10.1192/bja.2020.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARYStratified medicine has been successfully used in many areas of medicine, perhaps most notably oncology. There is now both a growing evidence base and mounting enthusiasm, supported at a governmental level and across industry, academia and clinical medicine, to apply this approach to neurodegenerative illnesses, including dementia, as these provide the greatest clinical and social challenge of our times. In this article we consider definitions of stratified medicine, look at its application in other medical specialties, review the national context in the UK and consider the current state, future potential and specific considerations of applying stratified medicine to dementia.
Collapse
|
4
|
Almehizia AA, AlRabiah H, Bakheit AH, Hassan ESG, Herqash RN, Abdelhameed AS. Spectroscopic and molecular docking studies reveal binding characteristics of nazartinib (EGF816) to human serum albumin. ROYAL SOCIETY OPEN SCIENCE 2020. [PMID: 32218978 DOI: 10.5061/dryad.05c6v93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The interactions of novel anti-cancer therapeutic agents with the different plasma and tissue components, specifically serum albumins, have lately gained considerable attention due to the significant influence of such interactions on the pharmacokinetics and/or -dynamics of this important class of therapeutics. Nazartinib (EGF 816; NAZ) is a new anti-cancer candidate proposed as a third-generation epidermal growth factor receptor tyrosine kinase inhibitor that is being developed and clinically tested for the management of non-small cell lung cancer. The current study aimed to characterize the interaction between NAZ and human serum albumin (HSA) using experimental and theoretical approaches. Experimental results of fluorescence quenching of HSA induced by NAZ revealed the development of a statically formed complex between NAZ and HSA. Interpretation of the observed fluorescence data using Stern-Volmer, Lineweaver-Burk and double-log formulae resulted in binding constants for HSA-NAZ complex in the range of (2.34-2.81) × 104 M-1 over the studied temperatures. These computed values were further used to elucidate thermodynamic attributes of the interaction, which showed that NAZ spontaneously binds to HSA with a postulated electrostatic force-driven interaction. This was further verified by theoretical examination of the NAZ docking on the HSA surface that revealed an HSA-NAZ complex where NAZ is bound to HSA Sudlow site I driven by hydrogen bonding in addition to electrostatic forces in the form of pi-H bond. The HSA binding pocket for NAZ was shown to encompass ARG 257, ARG 222, LYS 199 and GLU 292 with a total binding energy of -25.59 kJ mol-1.
Collapse
Affiliation(s)
- Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, El-Neelain University, PO Box 12702, Khartoum 11121, Sudan
| | - Eman S G Hassan
- Developmental Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Rashed N Herqash
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Almehizia AA, AlRabiah H, Bakheit AH, Hassan ESG, Herqash RN, Abdelhameed AS. Spectroscopic and molecular docking studies reveal binding characteristics of nazartinib (EGF816) to human serum albumin. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191595. [PMID: 32218978 PMCID: PMC7029911 DOI: 10.1098/rsos.191595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 05/05/2023]
Abstract
The interactions of novel anti-cancer therapeutic agents with the different plasma and tissue components, specifically serum albumins, have lately gained considerable attention due to the significant influence of such interactions on the pharmacokinetics and/or -dynamics of this important class of therapeutics. Nazartinib (EGF 816; NAZ) is a new anti-cancer candidate proposed as a third-generation epidermal growth factor receptor tyrosine kinase inhibitor that is being developed and clinically tested for the management of non-small cell lung cancer. The current study aimed to characterize the interaction between NAZ and human serum albumin (HSA) using experimental and theoretical approaches. Experimental results of fluorescence quenching of HSA induced by NAZ revealed the development of a statically formed complex between NAZ and HSA. Interpretation of the observed fluorescence data using Stern-Volmer, Lineweaver-Burk and double-log formulae resulted in binding constants for HSA-NAZ complex in the range of (2.34-2.81) × 104 M-1 over the studied temperatures. These computed values were further used to elucidate thermodynamic attributes of the interaction, which showed that NAZ spontaneously binds to HSA with a postulated electrostatic force-driven interaction. This was further verified by theoretical examination of the NAZ docking on the HSA surface that revealed an HSA-NAZ complex where NAZ is bound to HSA Sudlow site I driven by hydrogen bonding in addition to electrostatic forces in the form of pi-H bond. The HSA binding pocket for NAZ was shown to encompass ARG 257, ARG 222, LYS 199 and GLU 292 with a total binding energy of -25.59 kJ mol-1.
Collapse
Affiliation(s)
- Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, El-Neelain University, PO Box 12702, Khartoum 11121, Sudan
| | - Eman S. G. Hassan
- Developmental Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Rashed N. Herqash
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Li L, Pan J, Cai X, Gong E, Xu C, Zheng H, Cao Z, Yin Z. Human umbilical cord mesenchymal stem cells suppress lung cancer via TLR4/NF-κB signalling pathway. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1712257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Lu Li
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Jiongwei Pan
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Xiaoping Cai
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Enhui Gong
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Cunlai Xu
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Hao Zheng
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Zhuo Cao
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| | - Zhangyong Yin
- Respiratory Department, Lishui People’s Hospital, Lishui, P.R. China
| |
Collapse
|
7
|
Bebb DG, Agulnik J, Albadine R, Banerji S, Bigras G, Butts C, Couture C, Cutz JC, Desmeules P, Ionescu DN, Leighl NB, Melosky B, Morzycki W, Rashid-Kolvear F, Lab C, Sekhon HS, Smith AC, Stockley TL, Torlakovic E, Xu Z, Tsao MS. Crizotinib inhibition of ROS1-positive tumours in advanced non-small-cell lung cancer: a Canadian perspective. Curr Oncol 2019; 26:e551-e557. [PMID: 31548824 PMCID: PMC6726257 DOI: 10.3747/co.26.5137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ros1 kinase is an oncogenic driver in non-small-cell lung cancer (nsclc). Fusion events involving the ROS1 gene are found in 1%-2% of nsclc patients and lead to deregulation of a tyrosine kinase-mediated multi-use intracellular signalling pathway, which then promotes the growth, proliferation, and progression of tumour cells. ROS1 fusion is a distinct molecular subtype of nsclc, found independently of other recognized driver mutations, and it is predominantly identified in younger patients (<50 years of age), women, never-smokers, and patients with adenocarcinoma histology. Targeted inhibition of the aberrant ros1 kinase with crizotinib is associated with increased progression-free survival (pfs) and improved quality-of-life measures. As the sole approved treatment for ROS1-rearranged nsclc, crizotinib has been demonstrated, through a variety of clinical trials and retrospective analyses, to be a safe, effective, well-tolerated, and appropriate treatment for patients having the ROS1 rearrangement. Canadian physicians endorse current guidelines which recommend that all patients with nonsquamous advanced nsclc, regardless of clinical characteristics, be tested for ROS1 rearrangement. Future integration of multigene testing panels into the standard of care could allow for efficient and cost-effective comprehensive testing of all patients with advanced nsclc. If a ROS1 rearrangement is found, treatment with crizotinib, preferably in the first-line setting, constitutes the standard of care, with other treatment options being investigated, as appropriate, should resistance to crizotinib develop.
Collapse
Affiliation(s)
- D G Bebb
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - J Agulnik
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - R Albadine
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - S Banerji
- Manitoba: Department of Medical Oncology, University of Manitoba, Winnipeg (Banerji)
| | - G Bigras
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - C Butts
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - C Couture
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - J C Cutz
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - P Desmeules
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - D N Ionescu
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
| | - N B Leighl
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - B Melosky
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
| | - W Morzycki
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
| | - F Rashid-Kolvear
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
- Manitoba: Department of Medical Oncology, University of Manitoba, Winnipeg (Banerji)
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
- Saskatchewan: Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon (Torlakovic)
| | - Clin Lab
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - H S Sekhon
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - A C Smith
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - T L Stockley
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - E Torlakovic
- Saskatchewan: Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon (Torlakovic)
| | - Z Xu
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
| | - M S Tsao
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| |
Collapse
|
8
|
Dual-strand tumor suppressor miR-193b-3p and -5p inhibit malignant phenotypes of lung cancer by suppressing their common targets. Biosci Rep 2019; 39:BSR20190634. [PMID: 31262974 PMCID: PMC6630026 DOI: 10.1042/bsr20190634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging studies suggest that microRNAs (miRNAs) play multiple roles in cancer malignancy, including proliferation and acquisition of metastatic potential. Differentially expressed miRNAs responsible for the malignancy of lung cancer were searched by miRNA microarray using a previously established brain metastatic lung cancer model. Twenty-five miRNAs were down-regulated in brain metastatic lung cancer cells. Among those, miR-193b-3p and -5p were chosen for further studies. Their function in metastatic potential and proliferation was examined using Transwell invasion, wound healing, and colony forming assays. The underlying mechanism of tumor-suppressor miR-193b-3p and -5p was explored using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), Western blot, Argonaute 2-RNA immunoprecipitation (Ago2-RIP), and reporter assays. Both strands of miR-193b were down-regulated in brain metastatic lung cancer cells and in tissues from lung cancer patients. Overexpression of miR-193b-3p and -5p inhibited invasive and migratory activities and diminished clonogenic ability. Conversely, inhibition of miR-193b-3p or -5p increased the metastatic potential and colony forming ability. Cyclin D1 (CCND1), Ajuba LIM Protein (AJUBA), and heart development protein with EGF like domains 1 (HEG1) were identified as common target genes of miR-193b-3p and -5p. A reporter assay and an Ago2-RIP experiment showed that both miRNAs directly bind to the 3′ untranslated region (3′UTR) of the target mRNA. Knockdown of target gene reduced the proliferative and metastatic potential of primary and metastatic lung cancer cells. Our results demonstrate miR-193b is a dual-strand tumor suppressor and a novel therapeutic target for lung cancer.
Collapse
|
9
|
Li Y, Dai Y, Yu N, Duan X, Zhang W, Guo Y, Wang J. Morphological analysis of blood vessels near lung tumors using 3-D quantitative CT. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:149-160. [PMID: 30412516 DOI: 10.3233/xst-180429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Improved visualization of lung cancer-associated vessels is vital. OBJECTIVE To evaluate the efficacy of 3-D quantitative CT in lung cancer-associated pulmonary vessel assessment. METHODS Vascular CT changes were assessed visually and using FACT-Digital lung TM software (n = 162 patients, 178 controls). The total number of pulmonary vessels (TNV) and mean lumen area of pulmonary vessels (MAV) vertical to cross-sections of fifth/sixth-generation bronchioles were measured. RESULTS Visual investigation revealed fewer ipsilateral pulmonary vascular abnormalities in lung cancer (151/162) than did quantitative CT (162/162), and required more time (3.2±1.5 vs. 2.5±1.3 min) (P < 0.05). CT measurements revealed that the TNV vertical to the fifth-generation bronchial cross-section of the ipsilateral, contralateral, and control groups was 14.58±4.75, 9.58±3.74, and 10.22±4.07 and the MAV in these groups was 99.70±26.20, 58.76±29.29, and 57.76±18.32, respectively. The TNV vertical to the sixth-generation bronchial cross-section of the ipsilateral, contralateral, and control groups was 16.64±5.14, 11.59±4.06, and 11.75±4.16 and the MAV was 110.22±31.47, 67.62±30.41, and 60.24±16.18, respectively. The TNV and MAV in ipsilateral lung cancer tissues exceeded those in the contralateral side and control group tissues (P < 0.001). CONCLUSIONS Automated 3-D quantitative CT could successfully characterize pulmonary vessels and their lung cancer-associated changes.
Collapse
Affiliation(s)
- Yan Li
- Department of Medical Image, The First Affiliated Hospital of Xi'anJiaotong University, Xi'an, China
| | - Yongliang Dai
- Department of CT, The Weapons Industry of 521 Hospital, Xi'an, China
| | - Nan Yu
- Department of Radiology, The Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xian yang, China
| | - Xiaoyi Duan
- Department of Medical Image, The First Affiliated Hospital of Xi'anJiaotong University, Xi'an, China
| | - Weishan Zhang
- Department of Medical Image, The First Affiliated Hospital of Xi'anJiaotong University, Xi'an, China
| | - Youmin Guo
- Department of Medical Image, The First Affiliated Hospital of Xi'anJiaotong University, Xi'an, China
| | - Jiansheng Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Chen YT, Xie JY, Sun Q, Mo WJ. Novel drug candidates for treating esophageal carcinoma: A study on differentially expressed genes, using connectivity mapping and molecular docking. Int J Oncol 2018; 54:152-166. [PMID: 30387840 PMCID: PMC6254996 DOI: 10.3892/ijo.2018.4618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Patients with esophageal carcinoma (ESCA) have a poor prognosis and high mortality rate. Although standard therapies have had effect, there is an urgent requirement to develop novel options, as increasing drug tolerance has been identified in clinical practice. In the present study, differentially expressed genes (DEGs) of ESCA were identified in The Cancer Genome Atlas and Genotype-Tissue Expression databases. Functional and protein-protein interaction (PPI) analyses were performed. The Connectivity Map (CMAP) was selected to predict drugs for the treatment of ESCA, and their target genes were acquired from the Search Tool for Interactions of Chemicals (STITCH) by uploading the Simplified Molecular-Input Line-Entry System structure. Additionally, significant target genes and ESCA-associated hub genes were extracted using another PPI analysis, and the corresponding drugs were added to construct a network. Furthermore, the binding affinity between predicted drug candidates and ESCA-associated hub genes was calculated using molecular docking. Finally, 827 DEGs (|log2 fold-change|≥2; q-value <0.05), which are principally involved in protein digestion and absorption (P<0.005), the plasminogen-activating cascade (P<0.01), as well as the ‘biological regulation’ of the Biological Process, ‘membrane’ of the Cellular Component and ‘protein binding’ of the Molecular Function categories, were obtained. Additionally, 11 hub genes were obtained from the PPI network (all degrees ≥30). Furthermore, the 15 first screen drugs were extracted from CMAP (score <−0.85) and the 9 second screen drugs with 70 target genes were extracted from STITCH. Furthermore, another PPI analysis extracted 51 genes, and apigenin, baclofen, Prestwick-685, menadione, butyl hydroxybenzoate, gliclazide and valproate were selected as drug candidates for ESCA. Those molecular docking results with a docking score of >5.52 indicated the significance of apigenin, Prestwick-685 and menadione. The results of the present study may lead to novel drug candidates for ESCA, among which Prestwick-685 and menadione were identified to be significant new drug candidates.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia-Yi Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Sun
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Addressing the challenges of applying precision oncology. NPJ Precis Oncol 2017; 1:28. [PMID: 29872710 PMCID: PMC5871855 DOI: 10.1038/s41698-017-0032-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Precision oncology is described as the matching of the most accurate and effective treatments with the individual cancer patient. Identification of important gene mutations, such as BRCA1/2 that drive carcinogenesis, helped pave the way for precision diagnosis in cancer. Oncoproteins and their signaling pathways have been extensively studied, leading to the development of target-based precision therapies against several types of cancers. Although many challenges exist that could hinder the success of precision oncology, cutting-edge tools for precision diagnosis and precision therapy will assist in overcoming many of these difficulties. Based on the continued rapid progression of genomic analysis, drug development, and clinical trial design, precision oncology will ultimately become the standard of care in cancer therapeutics.
Collapse
|
12
|
Aromolaran KA, Goldstein PA. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol Pain 2017; 13:1744806917714693. [PMID: 28580836 PMCID: PMC5480635 DOI: 10.1177/1744806917714693] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Abstract Cancer is the second leading cause of death worldwide and is a major global health burden. Significant improvements in survival have been achieved, due in part to advances in adjuvant antineoplastic chemotherapy. The most commonly used antineoplastics belong to the taxane, platinum, and vinca alkaloid families. While beneficial, these agents are frequently accompanied by severe side effects, including chemotherapy-induced peripheral neuropathy (CPIN). While CPIN affects both motor and sensory systems, the majority of symptoms are sensory, with pain, tingling, and numbness being the predominant complaints. CPIN not only decreases the quality of life of cancer survivors but also can lead to discontinuation of treatment, thereby adversely affecting survival. Consequently, minimizing the incidence or severity of CPIN is highly desirable, but strategies to prevent and/or treat CIPN have proven elusive. One difficulty in achieving this goal arises from the fact that the molecular and cellular mechanisms that produce CPIN are not fully known; however, one common mechanism appears to be changes in ion channel expression in primary afferent sensory neurons. The processes that underlie chemotherapy-induced changes in ion channel expression and function are poorly understood. Not all antineoplastic agents directly affect ion channel function, suggesting additional pathways may contribute to the development of CPIN Indeed, there are indications that these drugs may mediate their effects through cellular signaling pathways including second messengers and inflammatory cytokines. Here, we focus on ion channelopathies as causal mechanisms for CPIN and review the data from both pre-clinical animal models and from human studies with the aim of facilitating the development of appropriate strategies to prevent and/or treat CPIN.
Collapse
Affiliation(s)
- Kelly A Aromolaran
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
13
|
Marmé D. Advances in Cancer Therapy: Targeted Therapies. Oncol Res Treat 2016; 39:758-759. [DOI: 10.1159/000453340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/19/2022]
|