1
|
Abstract
Graves' orbitopathy (GO) is an orbital autoimmune disorder and the main extrathyroidal manifestation of Graves' disease, the most common cause of hyperthyroidism. GO affects about 30% of Graves' patients, although fewer than 10% have severe forms requiring immunosuppressive treatments. Management of GO requires a multidisciplinary approach. Medical therapies for active moderate-to-severe forms of GO (traditionally, high-dose glucocorticoids) often provide unsatisfactory results, and subsequently surgeries are often needed to cure residual manifestations. The aim of this review is to provide an updated overview of current concepts regarding the epidemiology, pathogenesis, assessment, and treatment of GO, and to present emerging targeted therapies and therapeutic perspectives. Original articles, clinical trials, systematic reviews, and meta-analyses from 1980 to 2021 were searched using the following terms: Graves' disease, Graves' orbitopathy, thyroid eye disease, glucocorticoids, orbital radiotherapy, rituximab, cyclosporine, azathioprine, teprotumumab, TSH-receptor antibody, smoking, hyperthyroidism, hypothyroidism, thyroidectomy, radioactive iodine, and antithyroid drugs. Recent studies suggest a secular trend toward a milder phenotype of GO. Standardized assessment at a thyroid eye clinic allows for a better general management plan. Treatment of active moderate-to-severe forms of GO still relies in most cases on high-dose systemic-mainly intravenous-glucocorticoids as monotherapy or in combination with other therapies-such as mycophenolate, cyclosporine, azathioprine, or orbital radiotherapy-but novel biological agents-including teprotumumab, rituximab, and tocilizumab-have achieved encouraging results.
Collapse
Affiliation(s)
- Luigi Bartalena
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | | |
Collapse
|
2
|
Lanzolla G, Marinò M, Marcocci C. Selenium in the Treatment of Graves' Hyperthyroidism and Eye Disease. Front Endocrinol (Lausanne) 2021; 11:608428. [PMID: 33574798 PMCID: PMC7870989 DOI: 10.3389/fendo.2020.608428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Based on the role of oxidative stress in the pathogenesis of Graves' hyperthyroidism (GH) and Graves' Orbitopathy (GO), a therapy with the antioxidant agent selenium has been proposed and a number of studies have been performed, both in vitro and in vivo. In GH, reactive oxygen species (ROS) contribute to the thyroid and peripheral tissues damage. In GO, tissue hypoxia, as well as ROS, are involved in the typical changes that occur in fibroadipose orbital tissue and the perimysium of extraocular muscles. Antioxidants have been proposed to improve the effects of antithyroid drugs in GH patients, as well as the remodeling of orbital tissues in patients with GO. Here, we reviewed the literature on the possible beneficial effects and clinical use of selenium in the management of patients with GH and GO. A randomized clinical trial on the use of selenium in patients with mild GO provided evidence for a beneficial effect; no data are available on more severe forms of GO. Although the real effectiveness of selenium in patients with GH remains questionable, its use in the management of mild GO is generally believed to be beneficial, and selenium administration has been included in the clinical practice for the patients with mild eye disease.
Collapse
Affiliation(s)
| | | | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Lanzolla G, Marcocci C, Marinò M. Oxidative Stress in Graves Disease and Graves Orbitopathy. Eur Thyroid J 2020; 9:40-50. [PMID: 33511084 PMCID: PMC7802440 DOI: 10.1159/000509615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/21/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress is involved in the pathogenesis of Graves hyperthyroidism (GH) and Graves orbitopathy (GO) and an antioxidant approach has been proposed for both. In GH, a disbalance of the cell redox state is associated with thyroid hyperfunction and antithyroid medications may reduce oxidative stress. Tissue hypoxia participates in the pathogenesis of GO, and oxygen free radicals are involved in the typical changes of orbital tissues as reported by in vitro and clinical studies. Antioxidant agents, especially selenium, have been proposed as a therapeutic option for GH and GO. A clinical study regarding the use of selenium in mild GO has provided evidence for a beneficial effect in the short term, even though its beneficial effects in the long term are still to be investigated. In addition to selenium, a protective role of other antioxidant agents, i.e., quercetin, enalapril, vitamin C, N-acetyl-L-cysteine and melatonin has been suggested by in vitro studies, although clinical studies are lacking. Here, we review the role of oxidative stress and antioxidant agents in GH and GO.
Collapse
Affiliation(s)
| | - Claudio Marcocci
- *Claudio Marcocci, Endocrinology Unit II, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Via Paradisa 2, IT–56124 Pisa (Italy),
| | | |
Collapse
|
4
|
Lanzolla G, Marcocci C, Marinò M. Antioxidant Therapy in Graves' Orbitopathy. Front Endocrinol (Lausanne) 2020; 11:608733. [PMID: 33381085 PMCID: PMC7767963 DOI: 10.3389/fendo.2020.608733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
The balance of the cell redox state is a key point for the maintenance of cellular homeostasis. Increased reactive oxygen species (ROS) generation leads to oxidative damage of tissues, which is involved in the development of several diseases, including autoimmune diseases. Graves' Orbitopathy (GO) is a disfiguring autoimmune-related condition associated with Graves' Disease (GD). Patients with active, moderate-to-severe GO, are generally treated with high doses intravenous glucocorticoids (ivGCs) and/or orbital radiotherapy. On the contrary, up to recently, local ointments were the treatment most frequently offered to patients with mild GO, because the risks related to ivGCs does not justify the relatively poor benefits expected in mild GO. However, a medical treatment for these patients is heavily wanted, considering that GO can progress into more severe forms and also patients with mild GO complain with an impairment in their quality of life. Thus, based on the role of oxidative stress in the pathogenesis of GO, a therapy with antioxidant agents has been proposed and a number of studies have been performed, both in vitro and in vivo, which is reviewed here.
Collapse
|
5
|
Azizi F, Malboosbaf R. Safety of long-term antithyroid drug treatment? A systematic review. J Endocrinol Invest 2019; 42:1273-1283. [PMID: 31134536 DOI: 10.1007/s40618-019-01054-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023]
Abstract
Continued low-dose MMI treatment for longer than 12-18 months may be considered in patients not in remission. However, ATDs are not free from adverse effects. We undertook a systematic review to clarify safety of long-term ATD treatment. Medline and the Cochrane Library for trials published between 1950 and Nov 2018 were systematically searched. We included original studies containing data for long-term (> 18 months) ATD treatment. Two reviewers independently extracted data from included trials and any disagreement was adjudicated by consensus. Of 615 related articles found, 12 fulfilled the criteria. Six articles had data for adults, five for non-adults and one article had data for both groups. The sample sizes ranged between 20 and 249 individuals, and the mean duration of ATD treatment ranged between 2.1 and 14.2 years. Considering all data from 1660 patients treated with ATD for a mean duration of 5.8 years (around 10,000 patient-years), major complications occurred only in 14 patients: 7 severe agranulocytosis, 5 severe liver damage, one ANCA-associated glomerulonephritis and one vasculitis with small cutaneous ulcerations. Minor complications rates were between 2 and 36%, while more complications were in higher doses and in the children. The most reported AE was cutaneous reaction; the other adverse events were elevated liver enzymes, leukocytopenia, arthritis, arthralgia, myalgia, thrombocytopenia, fever, nausea and oral aphthous. Long-term ATD treatment is safe, especially in low dose and in adults, indicating that it should be considered as an earnest alternative treatment for GD.
Collapse
Affiliation(s)
- F Azizi
- Internal Medicine and Endocrinology, Endocrine Research Center of Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4763, Tehran, Islamic Republic of Iran.
| | - R Malboosbaf
- Internal Medicine and Endocrinology, Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
6
|
Wang Y, Zhao F, Rijntjes E, Wu L, Wu Q, Sui J, Liu Y, Zhang M, He M, Chen P, Hu S, Hou P, Schomburg L, Shi B. Role of Selenium Intake for Risk and Development of Hyperthyroidism. J Clin Endocrinol Metab 2019; 104:568-580. [PMID: 30265356 DOI: 10.1210/jc.2018-01713] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the importance of dietary selenium (Se) for hyperthyroidism. METHODS We performed a more in-depth analysis of a large cross-sectional study of 6152 participants from two counties within the Shaanxi Province, China. These counties are characterized by different habitual Se intake. We investigated the effects of a different dietary Se supply (0.02, 0.18, 0.6, or 2.0 ppm Se) on disease development in a mouse model of Graves disease (GD). RESULTS The cross-sectional study revealed a comparable prevalence of hyperthyroidism, irrespective of Se intake, in both counties. However, an unexpected sex-specific difference was noted, and Se deficiency might constitute a risk factor for hyperthyroidism, especially in males. In a mouse model, pathological thyroid morphology was affected, and greater Se intake exerted some protecting effects on the pathological distortion. Circulating thyroid hormone levels, malondialdehyde concentrations, total antioxidant capacity, and the titer of GD-causing TSH receptor autoantibodies were not affected by Se. Expression analysis of the transcripts in the spleen indicated regulatory effects on genes implicated in the immune response, erythropoiesis, and oxygen status. However, the humoral immune response, including the CD4/CD8 or T-helper 1/T-helper 2 cell ratio and the concentration of regulatory T cells, was similar between the experimental groups, despite the difference in Se intake. CONCLUSIONS Our data have highlighted a sexual dimorphism for the interaction of Se and thyroid disease risk in humans, with indications of a local protective effects of Se on thyroid gland integrity, which appears not to be reflected in the circulating biomarkers tested.
Collapse
Affiliation(s)
- Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fengyi Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Liping Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qian Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
- Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Jing Sui
- Department of Endocrinology and International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yufeng Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingqian He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shiqian Hu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, CVK, Berlin, Germany
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Abstract
PURPOSE To review the in vitro and in vivo studies supporting a role of selenium for the treatment of mild Graves orbitopathy. METHODS Review of the current literature on the role of selenium in the management of Graves orbitopathy. RESULTS Graves orbitopathy (GO) is a disfiguring and disabling disorder usually observed in patients with Graves hyperthyroidism, and more rarely in patients with hypothyroid autoimmune thyroiditis or in the absence of overt thyroid dysfunction. Noninvasive treatments include intravenous glucocorticoids and orbital radiotherapy and are generally offered to patients with moderately severe GO. In contrast, patients with mild GO are generally treated only with local measures. Thus, the benefits of intravenous glucocorticoids in mild GO are limited and do not justify the risks that the treatment carries. However, a medical treatment for mild GO is heavily wanted, as a relevant proportion of patients have a significant decrease in their quality of life, and GO can progress into more severe forms. Because of the role of oxidative stress in the pathogenesis of GO, an antioxidant approach has been proposed and the antioxidant agent selenium has been shown to be effective for GO. CONCLUSION Studies have shown that a 6-month course of sodium selenite can improve the course of mild GO and prevent deterioration when compared with placebo.
Collapse
|