1
|
Barrett P, Louie KW, Dupont JB, Mack DL, Maves L. Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. WIREs Mech Dis 2024:e1653. [PMID: 39444092 DOI: 10.1002/wsbm.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe degenerative muscle disease caused by mutations in the DMD gene, which encodes dystrophin. Despite its initial description in the late 19th century by French neurologist Guillaume Duchenne de Boulogne, and identification of causal DMD genetic mutations in the 1980s, therapeutics remain challenging. The current standard of care is corticosteroid treatment, which delays the progression of muscle dysfunction but is associated with significant adverse effects. Emerging therapeutic approaches, including AAV-mediated gene transfer, CRISPR gene editing, and small molecule interventions, are under development but face considerable obstacles. Although DMD is viewed as a progressive muscle disease, muscle damage and abnormal molecular signatures are already evident during fetal myogenesis. This early onset of pathology suggests that the limited success of current therapies may partly be due to their administration after aberrant embryonic myogenesis has occurred in the absence of dystrophin. Consequently, identifying optimal therapeutic strategies and intervention windows for DMD may depend on a better understanding of the earliest DMD disease mechanisms. As newer techniques are applied, the field is gaining increasingly detailed insights into the early muscle developmental abnormalities in DMD. A comprehensive understanding of the initial events in DMD pathogenesis and progression will facilitate the generation and testing of effective therapeutic interventions.
Collapse
Affiliation(s)
- Philip Barrett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Ke'ale W Louie
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - David L Mack
- Departments of Rehabilitation Medicine, Bioengineering and Neurobiology & Biophysics, Institute for Stem Cell and Regenerative Medicine, University of Washington Medicine, Seattle, Washington, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Timpani CA, Goodman CA, Stathis CG, White JD, Mamchaoui K, Butler-Browne G, Gueven N, Hayes A, Rybalka E. Adenylosuccinic acid therapy ameliorates murine Duchenne Muscular Dystrophy. Sci Rep 2020; 10:1125. [PMID: 31980663 PMCID: PMC6981178 DOI: 10.1038/s41598-020-57610-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Arising from the ablation of the cytoskeletal protein dystrophin, Duchenne Muscular Dystrophy (DMD) is a debilitating and fatal skeletal muscle wasting disease underpinned by metabolic insufficiency. The inability to facilitate adequate energy production may impede calcium (Ca2+) buffering within, and the regenerative capacity of, dystrophic muscle. Therefore, increasing the metabogenic potential could represent an effective treatment avenue. The aim of our study was to determine the efficacy of adenylosuccinic acid (ASA), a purine nucleotide cycle metabolite, to stimulate metabolism and buffer skeletal muscle damage in the mdx mouse model of DMD. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were treated with ASA (3000 µg.mL−1) in drinking water. Following the 8-week treatment period, metabolism, mitochondrial density, viability and superoxide (O2−) production, as well as skeletal muscle histopathology, were assessed. ASA treatment significantly improved the histopathological features of murine DMD by reducing damage area, the number of centronucleated fibres, lipid accumulation, connective tissue infiltration and Ca2+ content of mdx tibialis anterior. These effects were independent of upregulated utrophin expression in the tibialis anterior. ASA treatment also increased mitochondrial viability in mdx flexor digitorum brevis fibres and concomitantly reduced O2− production, an effect that was also observed in cultured immortalised human DMD myoblasts. Our data indicates that ASA has a protective effect on mdx skeletal muscles.
Collapse
Affiliation(s)
- Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia
| | - Craig A Goodman
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia
| | - Christos G Stathis
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia
| | - Jason D White
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Kamel Mamchaoui
- Institut de Myologie, Sorbonne University, INSERM UMRS974, Paris, France
| | | | - Nuri Gueven
- Pharmacy, School of Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia.,Department of Medicine-Western Health, The University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 8001, Australia. .,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, 3021, Australia.
| |
Collapse
|
3
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|