1
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
2
|
Lawlor M, Zigo M, Kerns K, Cho IK, Easley IV CA, Sutovsky P. Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease. Int J Mol Sci 2022; 23:ijms23137163. [PMID: 35806166 PMCID: PMC9266437 DOI: 10.3390/ijms23137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Huntington’s Disease (HD) is a fatal autosomal dominant neurodegenerative disease manifested through motor dysfunction and cognitive deficits. Decreased fertility is also observed in HD animal models and HD male patients, due to altered spermatogenesis and sperm function, thus resulting in reduced fertilization potential. Although some pharmaceuticals are currently utilized to mitigate HD symptoms, an effective treatment that remedies the pathogenesis of the disease is yet to be approved by the FDA. Identification of genes and relevant diagnostic biomarkers and therapeutic target pathways including glycolysis and mitochondrial complex-I-dependent respiration may be advantageous for early diagnosis, management, and treatment of the disease. This review addresses the HD pathway in neuronal and sperm metabolism, including relevant gene and protein expression in both neurons and spermatozoa, indicated in the pathogenesis of HD. Furthermore, zinc-containing and zinc-interacting proteins regulate and/or are regulated by zinc ion homeostasis in both neurons and spermatozoa. Therefore, this review also aims to explore the comparative role of zinc in both neuronal and sperm function. Ongoing studies aim to characterize the products of genes implicated in HD pathogenesis that are expressed in both neurons and spermatozoa to facilitate studies of future treatment avenues in HD and HD-related male infertility. The emerging link between zinc homeostasis and the HD pathway could lead to new treatments and diagnostic methods linking genetic sperm defects with somatic comorbidities.
Collapse
Affiliation(s)
- Meghan Lawlor
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - In Ki Cho
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Charles A. Easley IV
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-882-3329
| |
Collapse
|
3
|
Zigo M, Kerns K, Sen S, Essien C, Oko R, Xu D, Sutovsky P. Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Commun Biol 2022; 5:538. [PMID: 35660793 PMCID: PMC9166710 DOI: 10.1038/s42003-022-03485-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Sperm capacitation is a post-testicular maturation step endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. Recently discovered mammalian sperm zinc signatures and their changes during sperm in vitro capacitation (IVC) warranted a more in-depth study of zinc interacting proteins (further zincoproteins). Here, we identified 1752 zincoproteins, with 102 changing significantly in abundance (P < 0.05) after IVC. These are distributed across 8 molecular functions, 16 biological processes, and 22 protein classes representing 130 pathways. Two key, paradigm-shifting observations were made: i) during sperm capacitation, molecular functions of zincoproteins are both upregulated and downregulated within several molecular function categories; and ii) Huntington's and Parkinson's disease pathways were the two most represented, making spermatozoon a candidate model for studying neurodegenerative diseases. These findings highlight the importance of Zn2+ homeostasis in reproduction, offering new avenues in semen processing for human-assisted reproductive therapy, identification of somatic-reproductive comorbidities, and livestock breeding.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Sidharth Sen
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65201, USA
| | - Clement Essien
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3 N6, Canada
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Howland D, Ellederova Z, Aronin N, Fernau D, Gallagher J, Taylor A, Hennebold J, Weiss AR, Gray-Edwards H, McBride J. Large Animal Models of Huntington's Disease: What We Have Learned and Where We Need to Go Next. J Huntingtons Dis 2021; 9:201-216. [PMID: 32925082 PMCID: PMC7597371 DOI: 10.3233/jhd-200425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetically modified rodent models of Huntington’s disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.
Collapse
Affiliation(s)
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Neil Aronin
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Deborah Fernau
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Jill Gallagher
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Amanda Taylor
- Diplomate, MedVet, American College of Veterinary Internal Medicine - Neurology, Columbus, OH, USA
| | - Jon Hennebold
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| | - Alison R Weiss
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| | - Heather Gray-Edwards
- Horae Gene Therapy Center and RNA Therapeutics Institute at The University of Massachusetts Medical School, Worcester, MA, USA
| | - Jodi McBride
- Oregon National Primate Research Center at The Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Vallès A, Evers MM, Stam A, Sogorb-Gonzalez M, Brouwers C, Vendrell-Tornero C, Acar-Broekmans S, Paerels L, Klima J, Bohuslavova B, Pintauro R, Fodale V, Bresciani A, Liscak R, Urgosik D, Starek Z, Crha M, Blits B, Petry H, Ellederova Z, Motlik J, van Deventer S, Konstantinova P. Widespread and sustained target engagement in Huntington's disease minipigs upon intrastriatal microRNA-based gene therapy. Sci Transl Med 2021; 13:13/588/eabb8920. [PMID: 33827977 DOI: 10.1126/scitranslmed.abb8920] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Huntingtin (HTT)-lowering therapies hold promise to slow down neurodegeneration in Huntington's disease (HD). Here, we assessed the translatability and long-term durability of recombinant adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (rAAV5-miHTT) administered by magnetic resonance imaging-guided convention-enhanced delivery in transgenic HD minipigs. rAAV5-miHTT (1.2 × 1013 vector genome (VG) copies per brain) was successfully administered into the striatum (bilaterally in caudate and putamen), using age-matched untreated animals as controls. Widespread brain biodistribution of vector DNA was observed, with the highest concentration in target (striatal) regions, thalamus, and cortical regions. Vector DNA presence and transgene expression were similar at 6 and 12 months after administration. Expression of miHTT strongly correlated with vector DNA, with a corresponding reduction of mutant HTT (mHTT) protein of more than 75% in injected areas, and 30 to 50% lowering in distal regions. Translational pharmacokinetic and pharmacodynamic measures in cerebrospinal fluid (CSF) were largely in line with the effects observed in the brain. CSF miHTT expression was detected up to 12 months, with CSF mHTT protein lowering of 25 to 30% at 6 and 12 months after dosing. This study demonstrates widespread biodistribution, strong and durable efficiency of rAAV5-miHTT in disease-relevant regions in a large brain, and the potential of using CSF analysis to determine vector expression and efficacy in the clinic.
Collapse
Affiliation(s)
- Astrid Vallès
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands.
| | - Melvin M Evers
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands.
| | - Anouk Stam
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Marina Sogorb-Gonzalez
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Cynthia Brouwers
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Carlos Vendrell-Tornero
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Seyda Acar-Broekmans
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Lieke Paerels
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Jiri Klima
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Bozena Bohuslavova
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Roberta Pintauro
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Valentina Fodale
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Alberto Bresciani
- Department of Translational Biology, IRBM Science Park S.p.A., Via Pontina km 30,600, 00071 Pomezia, Italy
| | - Roman Liscak
- Department of Stereotactic Radioneurosurgery, Na Homolce Hospital, Roentgenova 37/2, 150 30, Prague 5, Czech Republic
| | - Dusan Urgosik
- Department of Stereotactic Radioneurosurgery, Na Homolce Hospital, Roentgenova 37/2, 150 30, Prague 5, Czech Republic
| | - Zdenek Starek
- Interventional Cardiac Electrophysiology, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Michal Crha
- Small Animal Clinic, Veterinary and Pharmaceutical University, Palackého třída 1946/1, 612 42 Brno, Czech Republic
| | - Bas Blits
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Harald Petry
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Rumburská 89, 277 21 Libechov, Czech Republic
| | - Sander van Deventer
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| | - Pavlina Konstantinova
- Department of Research and Development, uniQure biopharma B.V., Paasheuvelweg 25a, 1105 BP Amsterdam, Netherlands
| |
Collapse
|
6
|
Gatto RG, Weissmann C. Diffusion Tensor Imaging in Preclinical and Human Studies of Huntington's Disease: What Have we Learned so Far? Curr Med Imaging 2020; 15:521-542. [PMID: 32008561 DOI: 10.2174/1573405614666181115113400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Huntington's Disease is an irreversible neurodegenerative disease characterized by the progressive deterioration of specific brain nerve cells. The current evaluation of cellular and physiological events in patients with HD relies on the development of transgenic animal models. To explore such events in vivo, diffusion tensor imaging has been developed to examine the early macro and microstructural changes in brain tissue. However, the gap in diffusion tensor imaging findings between animal models and clinical studies and the lack of microstructural confirmation by histological methods has questioned the validity of this method. OBJECTIVE This review explores white and grey matter ultrastructural changes associated to diffusion tensor imaging, as well as similarities and differences between preclinical and clinical Huntington's Disease studies. METHODS A comprehensive review of the literature using online-resources was performed (Pub- Med search). RESULTS Similar changes in fractional anisotropy as well as axial, radial and mean diffusivities were observed in white matter tracts across clinical and animal studies. However, comparative diffusion alterations in different grey matter structures were inconsistent between clinical and animal studies. CONCLUSION Diffusion tensor imaging can be related to specific structural anomalies in specific cellular populations. However, some differences between animal and clinical studies could derive from the contrasting neuroanatomy or connectivity across species. Such differences should be considered before generalizing preclinical results into the clinical practice. Moreover, current limitations of this technique to accurately represent complex multicellular events at the single micro scale are real. Future work applying complex diffusion models should be considered.
Collapse
Affiliation(s)
- Rodolfo Gabriel Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - Carina Weissmann
- Insituto de Fisiología Biologia Molecular y Neurociencias-IFIBYNE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Baxa M, Levinska B, Skrivankova M, Pokorny M, Juhasova J, Klima J, Klempir J, Motlı K J, Juhas S, Ellederova Z. Longitudinal study revealing motor, cognitive and behavioral decline in a transgenic minipig model of Huntington's disease. Dis Model Mech 2019; 13:dmm.041293. [PMID: 31704691 PMCID: PMC6918771 DOI: 10.1242/dmm.041293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 01/15/2023] Open
Abstract
Huntington's disease (HD) is an inherited devastating neurodegenerative disease with no known cure to date. Several therapeutic treatments for HD are in development, but their safety, tolerability and efficacy need to be tested before translation to bedside. The monogenetic nature of this disorder has enabled the generation of transgenic animal models carrying a mutant huntingtin (mHTT) gene causing HD. A large animal model reflecting disease progression in humans would be beneficial for testing the potential therapeutic approaches. Progression of the motor, cognitive and behavioral phenotype was monitored in transgenic Huntington's disease minipigs (TgHD) expressing the N-terminal part of human mHTT. New tests were established to investigate physical activity by telemetry, and to explore the stress-induced behavioral and cognitive changes in minipigs. The longitudinal study revealed significant differences between 6- to 8-year-old TgHD animals and their wild-type (WT) controls in a majority of the tests. The telemetric study showed increased physical activity of 4.6- to 6.5-year-old TgHD boars compared to their WT counterparts during the lunch period as well as in the afternoon. Our phenotypic study indicates progression in adult TgHD minipigs and therefore this model could be suitable for longstanding preclinical studies of HD. This article has an associated First Person interview with the first author of the paper. Summary: The transgenic minipig model of Huntington's disease demonstrates a slow-progressing motor, cognitive and behavioral phenotype with later onset in adulthood.
Collapse
Affiliation(s)
- Monika Baxa
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Bozena Levinska
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Monika Skrivankova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Matous Pokorny
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague, Czech Republic
| | - Jana Juhasova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Jiri Klima
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Jiri Klempir
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 128 21 Prague, Czech Republic
| | - Jan Motlı K
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Stefan Juhas
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Zdenka Ellederova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| |
Collapse
|
8
|
Ardan T, Baxa M, Levinská B, Sedláčková M, Nguyen TD, Klíma J, Juhás Š, Juhásová J, Šmatlíková P, Vochozková P, Motlík J, Ellederová Z. Transgenic minipig model of Huntington's disease exhibiting gradually progressing neurodegeneration. Dis Model Mech 2019; 13:dmm.041319. [PMID: 31645369 PMCID: PMC6918760 DOI: 10.1242/dmm.041319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/18/2019] [Indexed: 12/26/2022] Open
Abstract
Recently developed therapeutic approaches for the treatment of Huntington's disease (HD) require preclinical testing in large animal models. The minipig is a suitable experimental animal because of its large gyrencephalic brain, body weight of 70-100 kg, long lifespan, and anatomical, physiological and metabolic resemblance to humans. The Libechov transgenic minipig model for HD (TgHD) has proven useful for proof of concept of developing new therapies. However, to evaluate the efficacy of different therapies on disease progression, a broader phenotypic characterization of the TgHD minipig is needed. In this study, we analyzed the brain tissues of TgHD minipigs at the age of 48 and 60-70 months, and compared them to wild-type animals. We were able to demonstrate not only an accumulation of different forms of mutant huntingtin (mHTT) in TgHD brain, but also pathological changes associated with cellular damage caused by mHTT. At 48 months, we detected pathological changes that included the demyelination of brain white matter, loss of function of striatal neurons in the putamen and activation of microglia. At 60-70 months, we found a clear marker of neurodegeneration: significant cell loss detected in the caudate nucleus, putamen and cortex. This was accompanied by clusters of structures accumulating in the neurites of some neurons, a sign of their degeneration that is also seen in Alzheimer's disease, and a significant activation of astrocytes. In summary, our data demonstrate age-dependent neuropathology with later onset of neurodegeneration in TgHD minipigs. Summary: Longitudinal phenotyping of the minipig model for Huntington's disease demonstrates a slow and age-dependent neurodegeneration.
Collapse
Affiliation(s)
- Taras Ardan
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Monika Baxa
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Božena Levinská
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Miroslava Sedláčková
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic.,Department of Histology and Embryology, Masaryk University in Brno, Faculty of Medicine, 62500 Brno, Czech Republic
| | - The Duong Nguyen
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Jiří Klíma
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Štefan Juhás
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Jana Juhásová
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Petra Šmatlíková
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Petra Vochozková
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Jan Motlík
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| | - Zdenka Ellederová
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, 27721 Libechov, Czech Republic
| |
Collapse
|
9
|
Rodinova M, Krizova J, Stufkova H, Bohuslavova B, Askeland G, Dosoudilova Z, Juhas S, Juhasova J, Ellederova Z, Zeman J, Eide L, Motlik J, Hansikova H. Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington's disease. Dis Model Mech 2019; 12:dmm.038737. [PMID: 31278192 PMCID: PMC6679385 DOI: 10.1242/dmm.038737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle wasting and atrophy is one of the more severe clinical impairments resulting from the progression of Huntington's disease (HD). Mitochondrial dysfunction may play a significant role in the etiology of HD, but the specific condition of mitochondria in muscle has not been widely studied during the development of HD. To determine the role of mitochondria in skeletal muscle during the early stages of HD, we analyzed quadriceps femoris muscle from 24-, 36-, 48- and 66-month-old transgenic minipigs that expressed the N-terminal portion of mutated human huntingtin protein (TgHD) and age-matched wild-type (WT) siblings. We found altered ultrastructure of TgHD muscle tissue and mitochondria. There was also significant reduction of activity of citrate synthase and respiratory chain complexes (RCCs) I, II and IV, decreased quantity of oligomycin-sensitivity conferring protein (OSCP) and the E2 subunit of pyruvate dehydrogenase (PDHE2), and differential expression of optic atrophy 1 protein (OPA1) and dynamin-related protein 1 (DRP1) in the skeletal muscle of TgHD minipigs. Statistical analysis identified several parameters that were dependent only on HD status and could therefore be used as potential biomarkers of disease progression. In particular, the reduction of biomarker RCCII subunit SDH30 quantity suggests that similar pathogenic mechanisms underlie disease progression in TgHD minipigs and HD patients. The perturbed biochemical phenotype was detectable in TgHD minipigs prior to the development of ultrastructural changes and locomotor impairment, which become evident at the age of 48 months. Mitochondrial disturbances may contribute to energetic depression in skeletal muscle in HD, which is in concordance with the mobility problems observed in this model.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marie Rodinova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Jana Krizova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Hana Stufkova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Bozena Bohuslavova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Georgina Askeland
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Zaneta Dosoudilova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Stefan Juhas
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Jana Juhasova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Zdenka Ellederova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Jiri Zeman
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jan Motlik
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 27721 Liběchov, Czech Republic
| | - Hana Hansikova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague 2, Czech Republic
| |
Collapse
|
10
|
Smatlikova P, Askeland G, Vaskovicova M, Klima J, Motlik J, Eide L, Ellederová Z. Age-Related Oxidative Changes in Primary Porcine Fibroblasts Expressing Mutated Huntingtin. NEURODEGENER DIS 2019; 19:22-34. [PMID: 31167196 DOI: 10.1159/000500091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/30/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a devastating neurodegenerative disorder caused by CAG triplet expansions in the huntingtin gene. Oxidative stress is linked to HD pathology, although it is not clear whether this is an effect or a mediator of disease. The transgenic (TgHD) minipig expresses the N-terminal part of human-mutated huntingtin and represents a unique model to investigate therapeutic strategies towards HD. A more detailed characterization of this model is needed to fully utilize its potential. METHODS In this study, we focused on the molecular and cellular features of fibroblasts isolated from TgHD minipigs and the wild-type (WT) siblings at different ages, pre-symptomatic at the age of 24-36 months and with the onset of behavioural symptoms at the age of 48 months. We measured oxidative stress, the expression of oxidative stress-related genes, proliferation capacity along with the expression of cyclin B1 and D1 proteins, cellular permeability, and the integrity of the nuclear DNA (nDNA) and mitochondrial DNA in these cells. RESULTS TgHD fibroblasts isolated from 48-month-old animals showed increased oxidative stress, which correlated with the overexpression of SOD2 encoding mitochondrial superoxide dismutase 2, and the NEIL3 gene encoding DNA glycosylase involved in replication-associated repair of oxidized DNA. TgHD cells displayed an abnormal proliferation capacity and permeability. We further demonstrated increased nDNA damage in pre-symptomatic TgHD fibroblasts (isolated from animals aged 24-36 months). CONCLUSIONS Our results unravel phenotypic alterations in primary fibroblasts isolated from the TgHD minipig model at the age of 48 months. Importantly, nDNA damage appears to precede these phenotypic alterations. Our results highlight the impact of fibroblasts from TgHD minipigs in studying the molecular mechanisms of HD pathophysiology that gradually occur with age.
Collapse
Affiliation(s)
- Petra Smatlikova
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Georgina Askeland
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Michaela Vaskovicova
- Laboratory of DNA Integrity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Jiri Klima
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Zdenka Ellederová
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia,
| |
Collapse
|
11
|
Smatlikova P, Juhas S, Juhasova J, Suchy T, Hubalek Kalbacova M, Ellederova Z, Motlik J, Klima J. Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Pig Transgenic Model Expressing Human Mutant Huntingtin. J Huntingtons Dis 2018; 8:33-51. [PMID: 30584151 DOI: 10.3233/jhd-180303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although the highest expression of mutant huntingtin (mtHtt) was observed in the brain, its negative effects were also apparent in other tissues. Specifically, mtHtt impairs metabolic homeostasis and causes transcriptional dysregulation in adipose tissue. Adipogenic differentiation can be induced by the activation of two transcription factors: CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). These same transcription factors were found to be compromised in some tissues of Huntington's disease (HD) mouse models and in lymphocytes of HD patients. OBJECTIVE This study investigated the adipogenic potential of mesenchymal stem cells (MSCs) derived from transgenic Huntington's disease (TgHD) minipigs expressing human mtHtt (1-548aa) containing 124 glutamines. Two differentiation conditions were used, employing PPARγ agonist rosiglitazone or indomethacin. METHODS Bone marrow MSCs were isolated from TgHD and WT minipig siblings and compared by their cluster of differentiation using flow cytometry. Their adipogenic potential in vitro was analyzed using quantitative immunofluorescence and western blot analysis of transcription factors and adipogenic markers. RESULTS Flow cytometry analysis did not reveal any significant difference between WT and TgHD MSCs. Nevertheless, following differentiation into adipocytes, the expression of CEBPα nuclear, PPARγ and adipogenic marker FABP4/AP2 were significantly lower in TgHD cells compared to WT cells. In addition, we proved both rosiglitazone and indomethacin to be efficient for adipogenic differentiation of porcine MSCs, with rosiglitazone showing a better adipogenic profile. CONCLUSIONS We demonstrated a negative influence of mtHtt on adipogenic differentiation of porcine MSCs in vitro associated with compromised expression of adipogenic transcription factors.
Collapse
Affiliation(s)
- Petra Smatlikova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Stefan Juhas
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jana Juhasova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Tomas Suchy
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Zdenka Ellederova
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jan Motlik
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Jiri Klima
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
12
|
Askeland G, Rodinova M, Štufková H, Dosoudilova Z, Baxa M, Smatlikova P, Bohuslavova B, Klempir J, Nguyen TD, Kuśnierczyk A, Bjørås M, Klungland A, Hansikova H, Ellederova Z, Eide L. A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies. Dis Model Mech 2018; 11:dmm.035949. [PMID: 30254085 PMCID: PMC6215428 DOI: 10.1242/dmm.035949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a monogenic, progressive, neurodegenerative disorder with currently no available treatment. The Libechov transgenic minipig model for HD (TgHD) displays neuroanatomical similarities to humans and exhibits slow disease progression, and is therefore more powerful than available mouse models for the development of therapy. The phenotypic characterization of this model is still ongoing, and it is essential to validate biomarkers to monitor disease progression and intervention. In this study, the behavioral phenotype (cognitive, motor and behavior) of the TgHD model was assessed, along with biomarkers for mitochondrial capacity, oxidative stress, DNA integrity and DNA repair at different ages (24, 36 and 48 months), and compared with age-matched controls. The TgHD minipigs showed progressive accumulation of the mutant huntingtin (mHTT) fragment in brain tissue and exhibited locomotor functional decline at 48 months. Interestingly, this neuropathology progressed without any significant age-dependent changes in any of the other biomarkers assessed. Rather, we observed genotype-specific effects on mitochondrial DNA (mtDNA) damage, mtDNA copy number, 8-oxoguanine DNA glycosylase activity and global level of the epigenetic marker 5-methylcytosine that we believe is indicative of a metabolic alteration that manifests in progressive neuropathology. Peripheral blood mononuclear cells (PBMCs) were relatively spared in the TgHD minipig, probably due to the lack of detectable mHTT. Our data demonstrate that neuropathology in the TgHD model has an age of onset of 48 months, and that oxidative damage and electron transport chain impairment represent later states of the disease that are not optimal for assessing interventions. This article has an associated First Person interview with the first author of the paper. Summary: Here, we show that a minipig model of Huntington's disease mimics human neurodegeneration and holds promise for future intervention studies. However, minipig peripheral blood mononuclear cells express no detectable mutant huntingtin, eliminating their use as monitoring tools.
Collapse
Affiliation(s)
- Georgina Askeland
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway.,Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Marie Rodinova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Hana Štufková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Zaneta Dosoudilova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Monika Baxa
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Petra Smatlikova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov 27721, Czech Republic
| | - Bozena Bohuslavova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov 27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12821, Czech Republic
| | - The Duong Nguyen
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov 27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Anna Kuśnierczyk
- Proteomics and Metabolomics Core Facility, PROMEC, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway.,Proteomics and Metabolomics Core Facility, PROMEC, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Zdenka Ellederova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov 27721, Czech Republic
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
13
|
Vidinská D, Vochozková P, Šmatlíková P, Ardan T, Klíma J, Juhás Š, Juhásová J, Bohuslavová B, Baxa M, Valeková I, Motlík J, Ellederová Z. Gradual Phenotype Development in Huntington Disease Transgenic Minipig Model at 24 Months of Age. NEURODEGENER DIS 2018; 18:107-119. [DOI: 10.1159/000488592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Huntington disease (HD) is an incurable neurodegenerative disease caused by the expansion of a polyglutamine sequence in a gene encoding the huntingtin (Htt) protein, which is expressed in almost all cells of the body. In addition to small animal models, new therapeutic approaches (including gene therapy) require large animal models as their large brains are a more realistic model for translational research. Objective: In this study, we describe phenotype development in transgenic minipigs (TgHD) expressing the N-terminal part of mutated human Htt at the age of 24 months. Methods: TgHD and wild-type littermates were compared. Western blot analysis and subcellular fractionation of different tissues was used to determine the fragmentation of Htt. Immunohistochemistry and optical analysis of coronal sections measuring aggregates, Htt expression, neuroinflammation, and myelination was applied. Furthermore, the expression of Golgi protein acyl-CoA binding domain containing 3 (ACBD3) was analyzed. Results: We found age-correlated Htt fragmentation in the brain. Among various tissues studied, the testes displayed the highest fragmentation, with Htt fragments detectable even in cell nuclei. Also, Golgi protein ACBD3 was upregulated in testes, which is in agreement with previously reported testicular degeneration in TgHD minipigs. Nevertheless, the TgHD-specific mutated Htt fragments were also present in the cytoplasm of striatum and cortex cells. Moreover, microglial cells were activated and myelination was slightly decreased, suggesting the development of a premanifest stage of neurodegeneration in TgHD minipigs. Conclusions: The gradual development of a neurodegenerative phenotype, accompanied with testicular degeneration, is observed in 24- month-old TgHD minipigs.
Collapse
|