1
|
Hovagimian JD, Yazdanbakhsh P, Halilibrahimoglu H, Couch MJ, Hoge R, Rudko DA. A birdcage transmit, 24-channel conformal receive array coil for sensitive 31P magnetic resonance spectroscopic imaging of the human brain at 7 T. NMR IN BIOMEDICINE 2024; 37:e5178. [PMID: 38784970 DOI: 10.1002/nbm.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Phosphorus (31P) magnetic resonance spectroscopic imaging (MRSI) can serve as a critical tool for more direct quantification of brain energy metabolism, tissue pH, and cell membrane turnover. However, the low concentration of 31P metabolites in biological tissue may result in low signal-to-noise ratio (SNR) in 31P MRS images. In this work, we present an innovative design and construction of a 31P radiofrequency coil for whole-brain MRSI at 7 T. Our coil builds on current literature in ultra-high field 31P coil design and offers complete coverage of the brain, including the cerebellum and brainstem. The coil consists of an actively detunable volume transmit (Tx) resonator and a custom 24-channel receive (Rx) array. The volume Tx resonator is a 16-rung high-pass birdcage coil. The Rx coil consists of a 24-element phased array composed of catered loop shapes and sizes built onto a custom, close-fitting, head-shaped housing. The Rx array was designed to provide complete coverage of the head, while minimizing mutual coupling. The Rx configuration had a mean S 11 reflection coefficient better than -20 decibels (dB) when the coil was loaded with a human head. The mean mutual coupling ( S 21 ) among Rx elements, when loaded with a human head, was -16 dB. In phantom imaging, the phased array produced a central SNR that was 4.4-fold higher than the corresponding central SNR when operating the 31P birdcage as a transceiver. The peripheral SNR was 12-fold higher when applying the optimized phased array. In vivo 3D 31P MRSI experiments produced high-quality spectra in the cerebrum gray and white matter, as well as in the cerebellum. Characteristic phosphorus metabolites related to adenosine triphosphate metabolism and cell membrane turnover were distinguishable across all brain regions. In summary, our results demonstrate the potential of our novel coil for accurate, whole-brain 31P metabolite quantification.
Collapse
Affiliation(s)
- Johnny Der Hovagimian
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Pedram Yazdanbakhsh
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Hande Halilibrahimoglu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Marcus J Couch
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Siemens Healthcare Limited, Montreal, QC, Canada
| | - Richard Hoge
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Ren J, Dewey RB, Rynders A, Evan J, Evan J, Ligozio S, Ho KS, Sguigna PV, Glanzman R, Hotchkin MT, Dewey RB, Greenberg BM. Evidence of brain target engagement in Parkinson's disease and multiple sclerosis by the investigational nanomedicine, CNM-Au8, in the REPAIR phase 2 clinical trials. J Nanobiotechnology 2023; 21:478. [PMID: 38087362 PMCID: PMC10717868 DOI: 10.1186/s12951-023-02236-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Impaired brain energy metabolism has been observed in many neurodegenerative diseases, including Parkinson's disease (PD) and multiple sclerosis (MS). In both diseases, mitochondrial dysfunction and energetic impairment can lead to neuronal dysfunction and death. CNM-Au8® is a suspension of faceted, clean-surfaced gold nanocrystals that catalytically improves energetic metabolism in CNS cells, supporting neuroprotection and remyelination as demonstrated in multiple independent preclinical models. The objective of the Phase 2 REPAIR-MS and REPAIR-PD clinical trials was to investigate the effects of CNM-Au8, administered orally once daily for twelve or more weeks, on brain phosphorous-containing energy metabolite levels in participants with diagnoses of relapsing MS or idiopathic PD, respectively. RESULTS Brain metabolites were measured using 7-Tesla 31P-MRS in two disease cohorts, 11 participants with stable relapsing MS and 13 participants with PD (n = 24 evaluable post-baseline scans). Compared to pre-treatment baseline, the mean NAD+/NADH ratio in the brain, a measure of energetic capacity, was significantly increased by 10.4% after 12 + weeks of treatment with CNM-Au8 (0.584 units, SD: 1.3; p = 0.037, paired t-test) in prespecified analyses of the combined treatment cohorts. Each disease cohort concordantly demonstrated increases in the NAD+/NADH ratio but did not reach significance individually (p = 0.11 and p = 0.14, PD and MS cohorts, respectively). Significant treatment effects were also observed for secondary and exploratory imaging outcomes, including β-ATP and phosphorylation potential across both cohorts. CONCLUSIONS Our results demonstrate brain target engagement of CNM-Au8 as a direct modulator of brain energy metabolism, and support the further investigation of CNM-Au8 as a potential disease modifying drug for PD and MS.
Collapse
Affiliation(s)
- Jimin Ren
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Richard B Dewey
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Parkinson's Disease and Movement Disorders Center, Boca Raton, FL, 33486, USA
| | - Austin Rynders
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Jacob Evan
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Jeremy Evan
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Shelia Ligozio
- Instat Clinical Research, A Veristat Company, 1 Wilson St., Chatham, NJ, 07928, USA
| | - Karen S Ho
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA.
| | - Peter V Sguigna
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Robert Glanzman
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Michael T Hotchkin
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Richard B Dewey
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Parkinson's Disease and Movement Disorders Center, Boca Raton, FL, 33486, USA
| | - Benjamin M Greenberg
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| |
Collapse
|
3
|
Sammi MK, Fryman A, Baker E, Moloney B, Powers K, West R, Bittner F, Lane M, Martin K, Pepelyayeva Y, Anderson VC, Rooney WD, Yadav V. Vascular disease risk factors in multiple sclerosis: Effect on metabolism and brain volumes. Mult Scler Relat Disord 2023; 74:104675. [PMID: 37121104 PMCID: PMC10560072 DOI: 10.1016/j.msard.2023.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Vascular disease risk factors (VDRF) such as hypertension, hyperlipidemia, obesity, diabetes and heart disease likely play a role in disease progression in people with multiple sclerosis (PwMS) (Marrie, Rudick et al. 2010). Studies exploring the mechanistic connection between vascular disease and MS disease progression are scant. We hypothesized that phosphate energy metabolism impairment in PwMS with VDRFs (VDRF+) will be greater compared to PwMS without VDRFs (VDRF-) and is related to increased brain atrophy in VDRF+. To test this hypothesis, we planned to study the differences in the high energy phosphate (HEP) metabolites in cerebral gray matter as assessed by 31P magnetic resonance spectroscopic imaging (MRSI) and MRI brain volumetric in the VDRF+ and VDRF- PwMS at four different timepoints over a 3 yearlong period using a 7T MR system. We present here the results from the cross-sectional evaluation of HEP metabolites and brain volumes. We also evaluated the differences in clinical impairment, blood metabolic biomarkers and quality of life in VDRF+ and VDRF- PwMS in this cohort. METHODS Group differences in high energy phosphate metabolites were assessed from a volume of interest in the occipital region using linear mixed models. Brain parenchymal and white matter lesion volumes were determined from MR anatomic images. We present here the cross-sectional analysis of the baseline data collected as part of a longitudinal 3 yearlong study where we obtained baseline and subsequent 6-monthly clinical and laboratory data and annual 7T MRI volumetric and 31P MR spectroscopic imaging (MRSI) data on 52 PwMS with and without VDRF. Key clinical and laboratory outcomes included: body mass index (BMI), waist and thigh circumferences and disability [Expanded Disability Status Scale (EDSS)], safety (complete blood count with differential, complete metabolic), lipid panel including total cholesterol and HbA1C. We analyzed clinical and laboratory data for the group differences using student's t or χ2 test. We investigated relationship between phosphate metabolites and VDRF using mixed effect linear regression. RESULTS Complete MRI data were available for 29 VDRF+, age 56.3 (6.8) years [mean (SD)] (83% female), and 23 VDRF-, age 52.5 (7.5) years (57% female) individuals with MS. The mean value of normalized adenosine triphosphate (ATP) (calculated as the ratio of ATP to total phosphate signal in a voxel) was decreased by 4.5% (p < .05) in VDRF+ compared to VDRF- MS group. White matter lesion (WML) volume fraction in VDRF+ individuals {0.007 (0.007)} was more than doubled compared to VDRF- participants {0.003 (0.006), p= .02}. CONCLUSIONS We found significantly lower brain ATP and higher inorganic phosphate (Pi) in those PwMS with VDRFs compared to those without. ATP depletion may reflect mitochondrial dysfunction. Ongoing longitudinal data analysis from this study, not presented here, will evaluate the relationship of phosphate metabolites, brain atrophy and disease progression in PwMS with and without vascular disease.
Collapse
Affiliation(s)
- Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Allison Fryman
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs MS Center of Excellence-West, Portland, OR, USA
| | - Eric Baker
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Brendan Moloney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Katherine Powers
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Randy West
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Frank Bittner
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Michael Lane
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs MS Center of Excellence-West, Portland, OR, USA
| | - Kayla Martin
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs MS Center of Excellence-West, Portland, OR, USA
| | - Yuliya Pepelyayeva
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Vijayshree Yadav
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs MS Center of Excellence-West, Portland, OR, USA.
| |
Collapse
|
4
|
Puchnin V, Ivanov V, Gulyaev M, Pirogov Y, Zubkov M. Imaging Capabilities of the ¹H-X-Nucleus Metamaterial-Inspired Multinuclear RF-Coil. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1587-1595. [PMID: 35030077 DOI: 10.1109/tmi.2022.3143693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, we present the initial experimental investigation of a two-coil receive/transmit design for small animals imaging at 7T MRI. The system uses a butterfly-type coil tuned to 300 MHz for scanning the 1H nuclei and a non-resonant loop antenna with a metamaterial-inspired resonator with the ability to tune over a wide frequency range for X-nuclei. 1H, 31P, 23Na and 13C, which are of particular interest in biomedical MRI, were selected as test nuclei in this work. Coil simulations show the two parts of the radiofrequency (RF) assembly to be decoupled and operating independently due to the orthogonality of the excited RF transverse magnetic fields. Simulations and phantom experimental imaging show sufficiently homogeneous transverse transmit RF fields and tuning capabilities for the pilot multiheteronuclear experiments.
Collapse
|
5
|
Ricigliano VA, Tonietto M, Palladino R, Poirion E, De Luca A, Branzoli F, Bera G, Maillart E, Stankoff B, Bodini B. Thalamic energy dysfunction is associated with thalamo-cortical tract damage in multiple sclerosis: A diffusion spectroscopy study. Mult Scler 2021; 27:528-538. [PMID: 33566723 DOI: 10.1177/1352458520921362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diffusion-weighted 1H magnetic resonance spectroscopy (DW-MRS) allows to quantify creatine-phosphocreatine brain diffusivity (ADC(tCr)), whose reduction in multiple sclerosis (MS) has been proposed as a proxy of energy dysfunction. OBJECTIVE To investigate whether thalamic ADC(tCr) changes are associated with thalamo-cortical tract damage in MS. METHODS Twenty patients with MS and 13 healthy controls (HC) were enrolled in a DW-MRS and DW imaging (DWI) study. From DW-MRS, ADC(tCr) and total N-acetyl-aspartate diffusivity (ADC(tNAA)) were extracted in the thalami. Three thalamo-cortical tracts and one non-thalamic control tract were reconstructed from DWI. Fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivity (RD), reflecting microstructural integrity, were extracted for each tract. Associations between thalamic ADC(tCr) and tract metrics were assessed using linear regression models adjusting for age, sex, thalamic volume, thalamic ADC(tNAA), and tract-specific lesion load. RESULTS Lower thalamic ADC(tCr) was associated with higher MD and RD of thalamo-cortical projections in MS (MD: p = 0.029; RD: p = 0.017), but not in HC (MD: p = 0.625, interaction term between thalamic ADC(tCr) and group = 0.019; RD: p = 0.320, interaction term = 0.05). Thalamic ADC(tCr) was not associated with microstructural changes of the control tract. CONCLUSION Reduced thalamic ADC(tCr) correlates with thalamo-cortical tract damage in MS, showing that pathologic changes in thalamic energy metabolism are associated with structural degeneration of connected fibers.
Collapse
Affiliation(s)
- Vito Ag Ricigliano
- Sorbonne University, Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - Matteo Tonietto
- Sorbonne University, Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France / Paris-Saclay University, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Fréderic Joliot, Orsay, France
| | - Raffaele Palladino
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK/Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Emilie Poirion
- Sorbonne University, Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - Alberto De Luca
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Branzoli
- Sorbonne University, Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France / Centre de Neuroimagerie de la Recherche, Paris Brain Institute, ICM, Paris, France
| | - Geraldine Bera
- Sorbonne University, Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | | | - Bruno Stankoff
- Sorbonne University, Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France / Neurology Department, St Antoine Hospital, APHP, Paris, France
| | - Benedetta Bodini
- Sorbonne University, Paris Brain Institute, ICM, Pitié Salpêtrière Hospital, Inserm UMR S 1127, CNRS UMR 7225, Paris, France / Neurology Department, St Antoine Hospital, APHP, Paris, France
| |
Collapse
|
6
|
Mertsalova MP, Pronin IN, Zakharova NE, Podoprigora AE, Batalov AI, Tyurina AN, Shults EI, Pogosbekyan EL, Fadeeva LM, Golanov AV, Postnov AA, Rodionov PV. [Intracellular pH measurement in glioblastoma cells: the possibilities of phosphorus-31 MR spectroscopy]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:26-32. [PMID: 33306297 DOI: 10.17116/neiro20208406126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To analyze intracellular pH measurement with phosphorus-31 MR spectroscopy in glioblastoma cells and to compare these data with intracellular pH in healthy volunteers. MATERIAL AND METHODS There were 10 patients aged 41 - 67 years with supratentorial glioblastomas. Intracellular pH in glioblastoma cells was compared with pH in healthy persons. RESULTS We found a tendency to increased intracellular pH in glioblastoma cells in comparison with pH in intact brain tissue. CONCLUSION Intracellular pH in brain tissue can be used as a potential marker of early abnormalities which could not be detected by conventional MRI. Moreover, these data may be valuable to estimate the efficacy of chemotherapy. The study was supported by Russian Science Foundation (grant No. 18-15-00337).
Collapse
Affiliation(s)
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A N Tyurina
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E I Shults
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - L M Fadeeva
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A A Postnov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | | |
Collapse
|
7
|
Ostojic SM. Brain creatine for predicting clinical course in white matter disorders. Mult Scler Relat Disord 2020; 45:102441. [DOI: 10.1016/j.msard.2020.102441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 11/26/2022]
|
8
|
Hnilicová P, Štrbák O, Kolisek M, Kurča E, Zeleňák K, Sivák Š, Kantorová E. Current Methods of Magnetic Resonance for Noninvasive Assessment of Molecular Aspects of Pathoetiology in Multiple Sclerosis. Int J Mol Sci 2020; 21:E6117. [PMID: 32854318 PMCID: PMC7504207 DOI: 10.3390/ijms21176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with expanding axonal and neuronal degeneration in the central nervous system leading to motoric dysfunctions, psychical disability, and cognitive impairment during MS progression. The exact cascade of pathological processes (inflammation, demyelination, excitotoxicity, diffuse neuro-axonal degeneration, oxidative and metabolic stress, etc.) causing MS onset is still not fully understood, although several accompanying biomarkers are particularly suitable for the detection of early subclinical changes. Magnetic resonance (MR) methods are generally considered to be the most sensitive diagnostic tools. Their advantages include their noninvasive nature and their ability to image tissue in vivo. In particular, MR spectroscopy (proton 1H and phosphorus 31P MRS) is a powerful analytical tool for the detection and analysis of biomedically relevant metabolites, amino acids, and bioelements, and thus for providing information about neuro-axonal degradation, demyelination, reactive gliosis, mitochondrial and neurotransmitter failure, cellular energetic and membrane alternation, and the imbalance of magnesium homeostasis in specific tissues. Furthermore, the MR relaxometry-based detection of accumulated biogenic iron in the brain tissue is useful in disease evaluation. The early description and understanding of the developing pathological process might be critical for establishing clinically effective MS-modifying therapies.
Collapse
Affiliation(s)
- Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Oliver Štrbák
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Štefan Sivák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| |
Collapse
|
9
|
Orban A, Garg B, Sammi MK, Bourdette DN, Rooney WD, Kuehl K, Spain RI. Effect of High-Intensity Exercise on Multiple Sclerosis Function and Phosphorous Magnetic Resonance Spectroscopy Outcomes. Med Sci Sports Exerc 2019; 51:1380-1386. [PMID: 31205251 PMCID: PMC6594188 DOI: 10.1249/mss.0000000000001914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE We determined if a high-intensity aerobic exercise program would be safe, improve expected fitness and clinical outcomes, and alter exploratory phosphorous magnetic resonance spectroscopy (P MRS) outcomes in persons with multiple sclerosis (PwMS). METHODS This open-label prospective pilot study compared two cohorts of ambulatory PwMS matched for age, sex and V˙O2max. Cohorts underwent 8 wk of high-intensity aerobic exercise (MS-Ex, n = 10) or guided stretching (MS-Ctr, n = 7). Aerobic exercise consisted of four 30-min sessions per week while maintaining ≥70% maximal HR. Changes in cardiorespiratory fitness, clinical outcomes, and P MRS of tibialis anterior (TA) muscle and brain were compared. Cross-sectional P MRS comparisons were made between all MS participants and a separate matched healthy control population. RESULTS The MS-Ex cohort achieved target increases in V˙O2max (mean, +12.7%; P = <0.001, between-group improvement, P = 0.03). One participant was withdrawn for exercise-induced syncope. The MS-Ex cohort had within-group improvements in fat mass (-5.8%; P = 0.04), lean muscle mass (+2.6%; P = 0.02), Symbol Digit Modalities Test (+15.1%; P = 0.04), and cognitive subscore of the Modified Fatigue Impact Scale (-26%; P = 0.03), whereas only the physical subscore of the Modified Fatigue Impact Scale improved in MS-Ctr (-16.1%; P = 0.007). P MRS revealed significant within-group increases in MS-Ex participants in TA rate constant of phosphocreatine (PCr) recovery (+31.5%; P = 0.03) and adenosine triphosphate/PCr (+3.2%; P = 0.01), and near significant between-group increases in TA PCr recovery rate constant (P = 0.05) but no significant changes in brain P MRS after exercise. Cross-sectional differences existed between MS and healthy control brain PCr/inorganic phosphate (4.61 ± 0.44, 3.93 ± 0.19; P = 0.0019). CONCLUSIONS High-intensity aerobic exercise in PwMS improved expected cardiorespiratory and clinical outcomes but provoked one serious adverse event. The P MRS may serve to explore underlying mechanisms by which aerobic exercise exerts cerebral benefits.
Collapse
Affiliation(s)
- Anna Orban
- Oregon Health & Science University, Neurology, Portland, OR
| | - Bharti Garg
- Oregon Health & Science University, Health Promotion & Sports Medicine, Portland, OR
| | - Manoj K Sammi
- Oregon Health & Science University, Advanced Imaging Research Center, Portland, OR
| | | | - William D Rooney
- Oregon Health & Science University, Advanced Imaging Research Center, Portland, OR
| | - Kerry Kuehl
- Oregon Health & Science University, Health Promotion & Sports Medicine, Portland, OR
| | - Rebecca I Spain
- Oregon Health & Science University, Neurology, Portland, OR.,Portland VA Medical Center, Neurology, Portland, OR
| |
Collapse
|
10
|
Guillevin C, Agius P, Naudin M, Herpe G, Ragot S, Maubeuge N, Philippe Neau J, Guillevin R. 1 H- 31 P magnetic resonance spectroscopy: effect of biotin in multiple sclerosis. Ann Clin Transl Neurol 2019; 6:1332-1337. [PMID: 31353859 PMCID: PMC6649368 DOI: 10.1002/acn3.50825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
Biotin is thought to improve functional impairment in progressive multiple sclerosis (MS) by upregulating bioenergetic metabolism. We enrolled 19 patients suffering from progressive MS (5 primary and 14 secondary Progressive-MS). Using cerebral multinuclear magnetic resonance spectroscopy (MMRS) and clinical evaluation before and after 6 months of biotin cure, we showed significant modifications of: PME/PDE, ATP, and lactate resonances; an improvement of EDSS Neuroscore. Our results are consistent with metabolic pathways concerned with biotin action and could suggest the usefulness of MMRS for monitoring.
Collapse
Affiliation(s)
- Carole Guillevin
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Radiology DepartmentPoitiers University Medical CenterPoitiersFrance
| | - Pierre Agius
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Neurology DepartmentPoitiers University Medical CenterPoitiersFrance
| | - Mathieu Naudin
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Radiology DepartmentPoitiers University Medical CenterPoitiersFrance
| | - Guillaume Herpe
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Radiology DepartmentPoitiers University Medical CenterPoitiersFrance
| | - Stéphanie Ragot
- CIC INSERM 1402Poitiers University Medical CenterPoitiersFrance
| | - Nicolas Maubeuge
- Neurology DepartmentPoitiers University Medical CenterPoitiersFrance
| | | | - Rémy Guillevin
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Radiology DepartmentPoitiers University Medical CenterPoitiersFrance
| |
Collapse
|
11
|
Pronin IN, Zakharova NE, Podoprigora AE, Batalov AI, Tyurina AN, Mertsalova MP, Fadeeva LM, Golanov AV, Postnov AA, Rodionov PV, Potapov AA. [Phosphorus (P) magnetic resonance spectroscopy for evaluation of brain tissue metabolism and measuring non-invasive pH. A study involving 23 volunteers. Part I]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2019; 83:5-10. [PMID: 31166312 DOI: 10.17116/neiro2019830215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evaluation of brain metabolism is an important part in examination of brain lesions. Phosphorus magnetic resonance spectroscopy opens up great opportunities for studying the energy metabolism and allows noninvasive examination of metabolic processes occurring both in healthy and in pathologic brain tissue by obtaining a spectrum of phosphorus-containing metabolites involved in the turnover of cell membrane phospholipids. The technique presented in this paper was used to conduct 31P MR spectroscopy and to estimate the ratio between the peaks of the main metabolites and intracellular pH of the healthy brain tissue of 23 volunteers in the age group under 30 years old in clinical settings. Based on the recorded stable phosphorus spectra of metabolites of the healthy brain tissue, the value of intracellular pH (6.963±0.044) and the ratio of the main PME/PDE peaks (1.17±0.20) were calculated. The database was created to subsequently analyze the metabolic changes in brain tissue spectra in norm and in pathology, as well as the intracellular pH variations that have diagnostic and prognostic value.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - A I Batalov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A N Tyurina
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - L M Fadeeva
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Postnov
- Burdenko Neurosurgical Institute, Moscow, Russia; National Research Nuclear University 'MEPhI', Moscow, Russia
| | - P V Rodionov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
12
|
Shen X, Chi Y, Huo B, Xiong K. Studies on phosphorus deficiency in the Qianbei-Pockmarked goat. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:896-903. [PMID: 30744368 PMCID: PMC6498070 DOI: 10.5713/ajas.18.0622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/04/2018] [Indexed: 12/02/2022]
Abstract
Objective Qianbei-Pockmarked goats are affected by a disorder locally referred to as ‘Ruanguzheng Disorder’, which is characterized by emaciation, lameness, muscular relaxation, stiffness of the extremities, and abnormal curvatures of the long bones. Our objective was to determine the relationship between the disorder and phosphorus deficiency. Methods Tissue samples were collected from affected and healthy animals, while soil and herbage samples were collected from affected and healthy pastures. Biochemical parameters were determined using an automatic biochemical analyzer (OLYMPUS AU 640, Olympus Optical Co., Tokyo, Japan). Mineral contents in soil, forage, and tissue were determined using a Perkin-Elmer AAS5000 atomic absorption spectrophotometer (Perkin-Elmer, Norwalk, CT, USA). Results The results showed that phosphorus contents in herbages from affected pastures were markedly lower than those from healthy areas (p<0.01), and the ratio of calcium to phosphorus in the affected herbages was 12.93:1. The phosphorus contents of wool, blood, tooth, and bone from affected animals were also markedly lower than those from healthy animals (p<0.01). Serum phosphorus values in affected animals were much lower than those in healthy animals, while serum alkaline phosphatase values from affected animals were markedly higher than those from healthy animals (p<0.01). Inorganic phosphorus values from affected animals were approximately half of that in the control group. Supplementation of disodium hydrogen phosphate prevented and cured the disorder. Conclusion This study demonstrates that Ruanguzheng disorder in Qianbei-Pockmarked goats is primarily caused by phosphorus deficiencies in herbage due to fenced pastures and natural habitat fragmentation.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.,State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang 550025, China.,World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang 550004, China
| | - Yongkuan Chi
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang 550025, China
| | - Bin Huo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
13
|
Targeting phosphocreatine metabolism in relapsing-remitting multiple sclerosis: evaluation with brain MRI, 1H and 31P MRS, and clinical and cognitive testing. J Neurol 2018; 265:2614-2624. [PMID: 30187159 DOI: 10.1007/s00415-018-9039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND/OBJECTIVES Fluoxetine and prucalopride might change phosphocreatine (PCr) levels via the cAMP-PKA pathway, an interesting target in the neurodegenerative mechanisms of MS. METHODS We conducted a two-center double-blind, placebo-controlled, randomized trial including 48 relapsing-remitting MS patients. Patients were randomized to receive placebo (n = 13), fluoxetine (n = 15), or prucalopride (n = 14) for 6 weeks. Proton (1H) and phosphorus (31P) magnetic resonance spectroscopy (MRS) as well as volumetric and perfusion MR imaging were performed at weeks 0, 2, and 6. Clinical and cognitive testing were evaluated at weeks 0 and 6. RESULTS No significant changes were observed for both 31P and 1H MRS indices. We found a significant effect on white matter volume and a trend towards an increase in grey matter and whole brain volume in the fluoxetine group at week 2; however, these effects were not sustained at week 6 for white matter and whole brain volume. Fluoxetine and prucalopride showed a positive effect on 9-HPT, depression, and fatigue scores. CONCLUSION Both fluoxetine and prucalopride had a symptomatic effect on upper limb function, fatigue, and depression, but this should be interpreted with caution. No effect of treatment was found on 31P and 1H MRS parameters, suggesting that these molecules do not influence the PCr metabolism.
Collapse
|
14
|
Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, Puri BK. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Mol Neurobiol 2018; 55:6282-6306. [PMID: 29294244 PMCID: PMC6061180 DOI: 10.1007/s12035-017-0843-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Patients with a diagnosis of multiple sclerosis (MS) or major depressive disorder (MDD) share a wide array of biological abnormalities which are increasingly considered to play a contributory role in the pathogenesis and pathophysiology of both illnesses. Shared abnormalities include peripheral inflammation, neuroinflammation, chronic oxidative and nitrosative stress, mitochondrial dysfunction, gut dysbiosis, increased intestinal barrier permeability with bacterial translocation into the systemic circulation, neuroendocrine abnormalities and microglial pathology. Patients with MS and MDD also display a wide range of neuroimaging abnormalities and patients with MS who display symptoms of depression present with different neuroimaging profiles compared with MS patients who are depression-free. The precise details of such pathology are markedly different however. The recruitment of activated encephalitogenic Th17 T cells and subsequent bidirectional interaction leading to classically activated microglia is now considered to lie at the core of MS-specific pathology. The presence of activated microglia is common to both illnesses although the pattern of such action throughout the brain appears to be different. Upregulation of miRNAs also appears to be involved in microglial neurotoxicity and indeed T cell pathology in MS but does not appear to play a major role in MDD. It is suggested that the antidepressant lofepramine, and in particular its active metabolite desipramine, may be beneficial not only for depressive symptomatology but also for the neurological symptoms of MS. One clinical trial has been carried out thus far with, in particular, promising MRI findings.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Murru
- Bipolar Disorders Program, Hospital Clínic Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil
- Revitalis, Waalre, The Netherlands
- Orygen - The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
15
|
van der Kemp WJ, Klomp DW, Wijnen JP. 31 P T 2 s of phosphomonoesters, phosphodiesters, and inorganic phosphate in the human brain at 7T. Magn Reson Med 2018; 80:29-35. [PMID: 29215148 PMCID: PMC5900879 DOI: 10.1002/mrm.27026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023]
Abstract
PURPOSE To determine the phosphorus-31 T2 s of phosphomonoesters, phosphodiesters, and inorganic phosphate in the healthy human brain at 7T. METHODS A 3D chemical shift imaging multi-echo sequence with composite block pulses for refocusing was used to measure one free induction decay (FID) and seven full echoes with an echo spacing of 45 ms on the brain of nine healthy volunteers (age range 22-45 years; average age 27 ± 8 years). Spectral fitting was used to determine the change in metabolic signal amplitude with echo time. RESULTS The average apparent T2 s with their standard deviation were 202 ± 6 ms, 129 ± 6 ms, 86 ± 2 ms, 214 ± 10 ms, and 213 ± 11 ms for phosphoethanolamine, phosphocholine, inorganic phosphate, glycerophosphoethanolamine, and glycerophosphocholine, respectively. CONCLUSION The determined apparent T2 for phosphoethanolamine, glycerophosphocholine, and glycerophosphoethanolamine is approximately 200 ms. The lower apparent T2 value for phosphocholine is attributed to the overlap of this resonance with the 3-phosphorous resonance of 2,3-diphosphoglycerate from blood, with an apparent shorter T2 . Omitting the FID signal and the first echo of phosphocholine leads to a T2 of 182 ± 7 ms, whereas a biexponential analysis leads to 203 ± 4 ms. These values are more in line with phosphoethanolamine and the phosphodiesters. The short T2 of inorganic phosphate is subscribed to the fast reversible exchange with γ-adenosine triphosphate, which is mediated by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase within the glycolytic pathway. Magn Reson Med 80:29-35, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
| | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jannie P. Wijnen
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|