1
|
Farinha-Ferreira M, Magalhães DM, Neuparth-Sottomayor M, Rafael H, Miranda-Lourenço C, Sebastião AM. Unmoving and uninflamed: Characterizing neuroinflammatory dysfunction in the Wistar-Kyoto rat model of depression. J Neurochem 2024; 168:2443-2460. [PMID: 38430009 DOI: 10.1111/jnc.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Reductionistic research on depressive disorders has been hampered by the limitations of animal models. Recently, it has been hypothesized that neuroinflammation is a key player in depressive disorders. The Wistar-Kyoto (WKY) rat is an often-used animal model of depression, but no information so far exists on its neuroinflammatory profile. As such, we compared male young adult WKY rats to Wistar (WS) controls, with regard to both behavioral performance and brain levels of key neuroinflammatory markers. We first assessed anxiety- and depression-like behaviors in a battery consisting of the Elevated Plus Maze (EPM), the Novelty Suppressed Feeding (NSFT), Open Field (OFT), Social Interaction (SIT), Forced Swim (FST), Sucrose Preference (SPT), and Splash tests (ST). We found that WKY rats displayed increased NSFT feeding latency, decreased OFT center zone permanence, decreased EPM open arm permanence, decreased SIT interaction time, and increased immobility in the FST. However, WKY rats also evidenced marked hypolocomotion, which is likely to confound performance in such tests. Interestingly, WKY rats performed similarly, or even above, to WS levels in the SPT and ST, in which altered locomotion is not a significant confound. In a separate cohort, we assessed prefrontal cortex (PFC), hippocampus and amygdala levels of markers of astrocytic (GFAP, S100A10) and microglial (Iba1, CD86, Ym1) activation status, as well as of three key proinflammatory cytokines (IL-1β, IL-6, TNF-α). There were no significant differences between strains in any of these markers, in any of the regions assessed. Overall, results highlight that behavioral data obtained with WKY rats as a model of depression must be carefully interpreted, considering the marked locomotor activity deficits displayed. Furthermore, our data suggest that, despite WKY rats replicating many depression-associated neurobiological alterations, as shown by others, this is not the case for neuroinflammation-related alterations, thus representing a novel limitation of this model.
Collapse
Affiliation(s)
- Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Neuparth-Sottomayor
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Rafael
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Raymond J, Morin A, Bradley-Garcia M, Plamondon H. Juvenile/Peripubertal Exposure to Omega-3 and Environmental Enrichment Differentially Affects CORT Secretion and Adulthood Stress Coping, Sociability, and CA3 Glucocorticoid Receptor Expression in Male and Female Rats. Nutrients 2024; 16:2350. [PMID: 39064793 PMCID: PMC11279577 DOI: 10.3390/nu16142350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In adult rats, omega-3 supplementation through fish oil (FO) and environmental enrichment (EE) have shown beneficial effects on cognition and stress regulation. This study assessed sex-specific effects of FO and EE during adolescence, a period critical for brain maturation, on adulthood coping mechanisms, sociability, and glucocorticoid regulation. An amount of 64 Wistar rats [n = 32/sex; postnatal day (PND) 23] were assigned to supplementation of control soybean oil (CSO) or menhaden fish oil (FO; 0.3 mL/100 g) from PND28 to 47 and exposed to EE or regular cage (RC) housing from PND28 to 58, with their blood corticosterone (CORT) levels being assessed weekly. As adults, exposure to repeated forced swim tests (FSTs; PND90-91) enabled analysis of coping responses, while socioemotional and memory responses were evaluated using the OFT, EPM, SIT, and Y maze tests (PND92-94). Immunohistochemistry determined hippocampal CA1/CA3 glucocorticoid receptor (GR) expression (PND95). CORT secretion gradually increased as the supplementation period elapsed in female rats, while changes were minimal in males. Coping strategies in the FST differed between sexes, particularly in FO-fed rats, where females and males, respectively, favoured floating and tail support to minimise energy consumption and maintain immobility. In the SIT, FO/EE promoted sociability in females, while a CSO diet favoured social recognition in males. Reduced CA3 GR-ir expression was found in FO/RC and CSO/EE rat groups, supporting stress resilience and memory consolidation. Our findings support environment and dietary conditions to exert a sex-specific impact on biobehavioural responses.
Collapse
Affiliation(s)
| | | | | | - Hélène Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada; (J.R.); (A.M.); (M.B.-G.)
| |
Collapse
|
3
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
4
|
Birnie MT, Eapen AV, Kershaw YM, Lodge D, Collingridge GL, Conway‐Campbell BL, Lightman SL. Time of day influences stress hormone response to ketamine. J Neuroendocrinol 2022; 34:e13194. [PMID: 36056546 PMCID: PMC9787621 DOI: 10.1111/jne.13194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
Over 50% of depressed patients show hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Conventional therapy takes weeks to months to improve symptoms. Ketamine has rapid onset antidepressant effects. Yet its action on HPA axis activity is poorly understood. Here, we measured the corticosterone (CORT) response to ketamine administered at different times of day in the Wistar-Kyoto (WKY) rat. In male rats, blood was collected every 10 min for 28 h using an automated blood sampling system. Ketamine (5/10/25 mg · kg) was infused through a subcutaneous cannula at two time points-during the active and inactive period. CORT levels in blood were measured in response to ketamine using a radioimmunoassay. WKY rats displayed robust circadian secretion of corticosterone and was not overly different to Sprague Dawley rats. Ketamine (all doses) significantly increased CORT response at both infusion times. However, a dose dependent effect and marked increase over baseline was observed when ketamine was administered during the inactive phase. Ketamine has a robust and rapid effect on HPA axis function. The timing of ketamine injection may prove crucial for glucocorticoid-mediated action in depression.
Collapse
Affiliation(s)
- Matthew T. Birnie
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - Alen V. Eapen
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Yvonne M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - David Lodge
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Graham L. Collingridge
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Becky L. Conway‐Campbell
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| |
Collapse
|
5
|
Millard SJ, Weston-Green K, Newell KA. The Wistar-Kyoto rat model of endogenous depression: A tool for exploring treatment resistance with an urgent need to focus on sex differences. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109908. [PMID: 32145362 DOI: 10.1016/j.pnpbp.2020.109908] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is one of the leading causes of years lived with disability and contributor to the burden of disease worldwide. The incidence of MDD has increased by ~20% in the last decade. Currently antidepressant drugs such as the popular selective serotonin reuptake inhibitors (SSRIs) are the leading form of pharmaceutical intervention for the treatment of MDD. SSRIs however, are inefficient in ameliorating depressive symptoms in ~50% of patients and exhibit a prolonged latency of efficacy. Due to the burden of disease, there is an increasing need to understand the neurobiology underpinning MDD and to discover effective treatment strategies. Endogenous models of MDD, such as the Wistar-Kyoto (WKY) rat provide a valuable tool for investigating the pathophysiology of MDD. The WKY rat displays behavioural and neurobiological phenotypes similar to that observed in clinical cases of MDD, as well as resistance to common antidepressants. Specifically, the WKY strain exhibits increased anxiety- and depressive-like behaviours, as well as alterations in Hypothalamic Pituitary Adrenal (HPA) axis, serotonergic, dopaminergic and neurotrophic systems with emerging studies suggesting an involvement of neuroinflammation. More recent investigations have shown evidence for reduced cortical and hippocampal volumes and altered glutamatergic signalling in the WKY strain. Given the growing interest in therapeutics targeting the glutamatergic system, the WKY strain presents itself as a potentially useful tool for screening novel antidepressant drugs and their efficacy against treatment resistant depression. However, despite the sexual dimorphism present in the pathophysiology and aetiology of MDD, sex differences in the WKY model are rarely investigated, with most studies focusing on males. Accordingly, this review highlights what is known regarding sex differences and where further research is needed. Whilst acknowledging that investigation into a range of depression models is required to fully elucidate the underlying mechanisms of MDD, here we review the WKY strain, and its relevance to the clinic.
Collapse
Affiliation(s)
- Samuel J Millard
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Katrina Weston-Green
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Kelly A Newell
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|