1
|
Ghosh U, Tal-Gan Y. Designing Highly Potent Side-Chain Lactam-Bridged Cyclic Competence-Stimulating Peptide-Based Quorum-Sensing Modulators in Streptococcus oligofermentans. ACS Infect Dis 2024. [PMID: 39686807 DOI: 10.1021/acsinfecdis.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Streptococcus oligofermentans, a Gram-positive bacterium found in the oral microbiome, shows promise as an oral probiotic for preventing dental caries. It exhibits a reverse correlation with Streptococcus mutans, a key caries-causing pathogen, likely due to its production of hydrogen peroxide, a process mediated by quorum sensing (QS). In this work, we set out to develop novel lactam-based cyclic analogues of the competence stimulating peptide (CSP) signal utilized by S. oligofermentans for QS activation. To this end, we first conducted a ring position scan, where we determined the best positions within the CSP sequence to use for macrolactamization. We then conducted systematic ring size and bridge position scans to fine-tune the cyclic peptide conformation and identified a cyclic analogue, CSP-cyc(K2E2), with enhanced biological activity, 7-fold more active than the native CSP signal. This analogue also exhibited improved stability toward enzymatic degradation, demonstrating this analogue's potential utility as a chemical probe to study interspecies interactions between oral microbes and as a potential therapeutic agent. Overall, our lead cyclic analogue could be applied to augment the biotherapeutic potential of S. oligofermentans against S. mutans infections.
Collapse
Affiliation(s)
- Uttam Ghosh
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
2
|
Chen Z, Lu Y, Xu Z, Wu L, Wei X, Cai Y. Evaluation of a Burkholderia ambifaria strain from plants as a novel promising probiotic in dental caries management. J Oral Microbiol 2024; 16:2420612. [PMID: 39502190 PMCID: PMC11536693 DOI: 10.1080/20002297.2024.2420612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Background Probiotics serve as a novel preventive or therapeutic approach for dental caries owing to their ability to reverse dysbiosis and restore a healthy microbiota. Here, we identified Burkholderia ambifaria AFS098024 as a probiotic candidate isolated from plants. Methods The safety of B. ambifaria was evaluated by hemolytic activity, D-lactic acid production and antibiotic susceptibility. In vitro biofilm model derived from the saliva of caries-free and caries-active donors and in vivo rat caries model were used to assess the efficacy of B. ambifaria in caries prevention and treatment. Results B. ambifaria was safe as a probiotic candidate and it could integrate with in vitro biofilm model. It significantly reduced the biomass and lactate production of biofilms from caries-active donors and disrupted biofilm structures. B. ambifaria effectively reduced the severity of carious lesions in rat molars, regardless of the inoculation sequence. Molars pretreated or treated with B. ambifaria demonstrated notably higher enamel volumes. Additionally, colonization of rat molars by B. ambifaria persisted for 6 weeks. Conclusion The B. ambifaria strain used in this study holds promise as a probiotic for inhibiting dental caries, both in vitro and in vivo.
Collapse
Affiliation(s)
- Zirang Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yangyu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijing Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanling Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
da Cruz Nizer WS, Adams ME, Allison KN, Montgomery MC, Mosher H, Cassol E, Overhage J. Oxidative stress responses in biofilms. Biofilm 2024; 7:100203. [PMID: 38827632 PMCID: PMC11139773 DOI: 10.1016/j.bioflm.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Oxidizing agents are low-molecular-weight molecules that oxidize other substances by accepting electrons from them. They include reactive oxygen species (ROS), such as superoxide anions (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (HO-), and reactive chlorine species (RCS) including sodium hypochlorite (NaOCl) and its active ingredient hypochlorous acid (HOCl), and chloramines. Bacteria encounter oxidizing agents in many different environments and from diverse sources. Among them, they can be produced endogenously by aerobic respiration or exogenously by the use of disinfectants and cleaning agents, as well as by the mammalian immune system. Furthermore, human activities like industrial effluent pollution, agricultural runoff, and environmental activities like volcanic eruptions and photosynthesis are also sources of oxidants. Despite their antimicrobial effects, bacteria have developed many mechanisms to resist the damage caused by these toxic molecules. Previous research has demonstrated that growing as a biofilm particularly enhances bacterial survival against oxidizing agents. This review aims to summarize the current knowledge on the resistance mechanisms employed by bacterial biofilms against ROS and RCS, focussing on the most important mechanisms, including the formation of biofilms in response to oxidative stressors, the biofilm matrix as a protective barrier, the importance of detoxifying enzymes, and increased protection within multi-species biofilm communities. Understanding the complexity of bacterial responses against oxidative stress will provide valuable insights for potential therapeutic interventions and biofilm control strategies in diverse bacterial species.
Collapse
Affiliation(s)
| | - Madison Elisabeth Adams
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Kira Noelle Allison
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | | | - Hailey Mosher
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON, Canada
| |
Collapse
|
4
|
Mato EG, Montaño-Barrientos BJ, Rivas-Mundiña B, Aneiros IV, López LS, Posse JL, Lamas LM. Anti-caries Streptococcus spp.: A potential preventive tool for special needs patients. SPECIAL CARE IN DENTISTRY 2024; 44:813-822. [PMID: 37674277 DOI: 10.1111/scd.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Probiotics are living microorganisms that act on the host-microbiome interface to restore the microbiota's physiological homeostasis. Numerous probiotics have been marketed with inhibitory activity against Streptococcus mutans and consequently with a potential anti-caries effect, mainly of the genera Lactobacillus and Bifidobacterium, whose main disadvantage is their limited ability to settle in the oral cavity. METHODS This narrative review describes the main Streptococcus spp. with probiotic anti-Streptococcus mutans activity, whose substantivity is greater than that of Lactobacillus spp. and consequently with anti-caries potentiality. We performed a literature review in the PubMed, Science Direct and Google Scholar databases of articles published in English (without time restriction) related to caries and probiotics. RESULTS The potential identified anti-caries probiotics included Streptococcus spp. A12, Streptococcus oralis (AJ3), Streptococcus oligofermentans, Streptococcus salivarius (K12, M18, JH, LAB813, 24SMB), Streptococcus spp. with arginolytic activity (S. sanguinis, S. gordonii, S. ratti, S. parasanguinis, S. intermedius, S. australis, and S. cristatus), Streptococcus rattus (JH145), Streptococcus dentisani and Streptococcus downii. CONCLUSIONS The possibility of using these Streptococcus spp. as probiotics that inhibit the growth of dental plaque and the development of carious lesions represents a potential tool of particular interest for individuals with physical or intellectual disabilities that impede the routine and effective application of mechanical dental plaque removal techniques.
Collapse
Affiliation(s)
- Eliane García Mato
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bitalio J Montaño-Barrientos
- Clinical Microbiology, Hospital Álvaro Cunqueiro, University Hospital Complex of Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), Vigo, Galicia, Spain
| | - Berta Rivas-Mundiña
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Iván Varela Aneiros
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Lucía Sande López
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Jacobo Limeres Posse
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Lucía Martínez Lamas
- Clinical Microbiology, Hospital Álvaro Cunqueiro, University Hospital Complex of Vigo, Microbiology and Infectology Group, Galicia Sur Health Research Institute (IISGS), Vigo, Galicia, Spain
| |
Collapse
|
5
|
Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM, Andrade JM. Bacterial Response to Oxidative Stress and RNA Oxidation. Front Genet 2022; 12:821535. [PMID: 35082839 PMCID: PMC8784731 DOI: 10.3389/fgene.2021.821535] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteria have to cope with oxidative stress caused by distinct Reactive Oxygen Species (ROS), derived not only from normal aerobic metabolism but also from oxidants present in their environments. The major ROS include superoxide O2−, hydrogen peroxide H2O2 and radical hydroxide HO•. To protect cells under oxidative stress, bacteria induce the expression of several genes, namely the SoxRS, OxyR and PerR regulons. Cells are able to tolerate a certain number of free radicals, but high levels of ROS result in the oxidation of several biomolecules. Strikingly, RNA is particularly susceptible to this common chemical damage. Oxidation of RNA causes the formation of strand breaks, elimination of bases or insertion of mutagenic lesions in the nucleobases. The most common modification is 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine. The structure and function of virtually all RNA species (mRNA, rRNA, tRNA, sRNA) can be affected by RNA oxidation, leading to translational defects with harmful consequences for cell survival. However, bacteria have evolved RNA quality control pathways to eliminate oxidized RNA, involving RNA-binding proteins like the members of the MutT/Nudix family and the ribonuclease PNPase. Here we summarize the current knowledge on the bacterial stress response to RNA oxidation, namely we present the different ROS responsible for this chemical damage and describe the main strategies employed by bacteria to fight oxidative stress and control RNA damage.
Collapse
Affiliation(s)
- André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alda F Q Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
6
|
Mull RW, Tal-Gan Y. Elucidating the Role and Structure-Activity Relationships of the Streptococcus oligofermentans Competence-Stimulating Peptide. ACS Chem Biol 2021; 16:2834-2844. [PMID: 34860484 DOI: 10.1021/acschembio.1c00746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Streptococcus oligofermentans is an early colonizer of the oral microbiome with documented bactericidal activity against the oral pathogen Streptococcus mutans. S. oligofermentans has been observed to possess the typical comABCDE competence regulon found within most oral streptococci; however, the competence-stimulating peptide (CSP) responsible for QS activation and the regulatory role of the competence regulon is yet to be explored. Herein, we have both confirmed the identity of the S. oligofermentans CSP and utilized a wide range of phenotypic assays to characterize its regulatory role in competence, biofilm formation, and hydrogen peroxide formation. To determine the importance of each amino acid residue in CSP/ComD binding, we performed systematic replacement of amino acid residues within the S. oligofermentans CSP and developed a luciferase-based reporter system to assess the ability of these mutated analogues to modulate the competence regulon. Additionally, we performed CD analysis on mutated CSP analogues to determine the correlation between the peptide secondary structure and QS activation. To further explore S. oligofermentans' potential as a biotherapeutic against S. mutans infection, lead QS activators and inhibitors were used in interspecies competition assays to assess the effect of QS modulation on interactions between these two species. Lastly, we have documented a lack of S. oligofermentans-induced cytotoxicity, highlighting the potential of this native flora as a biotherapeutic with minimal health risks.
Collapse
Affiliation(s)
- Ryan W. Mull
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
7
|
Fasnacht M, Polacek N. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Front Mol Biosci 2021; 8:671037. [PMID: 34041267 PMCID: PMC8141631 DOI: 10.3389/fmolb.2021.671037] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Ever since the "great oxidation event," Earth's cellular life forms had to cope with the danger of reactive oxygen species (ROS) affecting the integrity of biomolecules and hampering cellular metabolism circuits. Consequently, increasing ROS levels in the biosphere represented growing stress levels and thus shaped the evolution of species. Whether the ROS were produced endogenously or exogenously, different systems evolved to remove the ROS and repair the damage they inflicted. If ROS outweigh the cell's capacity to remove the threat, we speak of oxidative stress. The injuries through oxidative stress in cells are diverse. This article reviews the damage oxidative stress imposes on the different steps of the central dogma of molecular biology in bacteria, focusing in particular on the RNA machines involved in transcription and translation.
Collapse
Affiliation(s)
- Michel Fasnacht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
In-Situ Investigation on Nanoscopic Biomechanics of Streptococcus mutans at Low pH Citric Acid Environments Using an AFM Fluid Cell. Int J Mol Sci 2020; 21:ijms21249481. [PMID: 33322170 PMCID: PMC7764216 DOI: 10.3390/ijms21249481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Streptococcus mutans (S. mutans) is widely regarded as the main cause of human dental caries via three main virulence factors: adhesion, acidogenicity, and aciduricity. Citric acid is one of the antibiotic agents that can inhibit the virulence capabilities of S. mutans. A full understanding of the acidic resistance mechanisms (ARMs) causing bacteria to thrive in citrate transport is still elusive. We propose atomic force microscopy (AFM) equipped with a fluid cell to study the S. mutans ARMs via surface nanomechanical properties at citric acid pH 3.3, 2.3, and 1.8. Among these treatments, at pH 1.8, the effect of the citric acid shock in cells is demonstrated through a significantly low number of high adhesion zones, and a noticeable reduction in adhesion forces. Consequently, this study paves the way to understand that S. mutans ARMs are associated with the variation of the number of adhesion zones on the cell surface, which is influenced by citrate and proton transport. The results are expected to be useful in developing antibiotics or drugs involving citric acid for dental plaque treatment.
Collapse
|
9
|
Nie M, Deng DM, Wu Y, de Oliveira KT, Bagnato VS, Crielaard W, Rastelli ANDS. Photodynamic inactivation mediated by methylene blue or chlorin e6 against Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther 2020; 31:101817. [DOI: 10.1016/j.pdpdt.2020.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
|
10
|
Wu CY, He SJ, Mar K, Stephen Hsu CY, Hung SL. Inhibition of Streptococcus mutans by a commercial yogurt drink. J Dent Sci 2019; 14:198-205. [PMID: 31205608 PMCID: PMC6558303 DOI: 10.1016/j.jds.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/02/2018] [Indexed: 12/01/2022] Open
Abstract
Background/Purpose Studies have been focused on using probiotics to prevent caries. The lactobacillus probiotic bacteria in Yakult® (LcY) has been shown to inhibit the growth or biofilm formation of Streptococcus mutans. However, sucrose in Yakult® raised concerns. The purpose of this study was to determine effects of Yakult® on the growth and adhesion of S. mutans. Materials and methods S. mutans was grown in serial diluted Yakult®, filtered Yakult® or 20% heated Yakult®. S. mutans was co-cultured with LcY in media with or without diluted filtered Yakult®, or in LcY grown in media with or without sugars. Colony forming units and pH values of bacterial cultures were determined. SYTO 9-stained adhered bacteria were observed. Results Yakult® inhibited the growth of S. mutans. Filtering or heating Yakult® reduced its inhibitory ability against S. mutans. The inhibitory effect of LcY against S. mutans was enhanced when cultured in the presence of 20% filtered Yakult®. LcY cultured in sucrose media for 24 h inhibited the growth of S. mutans, but this effect was less evident when LcY was grown for 48 h. LcY grown in glucose or lactose media similarly reduced S. mutans growth. Culturing S. mutans with LcY grown in sucrose or glucose media reduced bacterial adhesion. However, co-culturing S. mutans with LcY grown in the lactose media did not decrease bacterial adhesion. Conclusion Yakult® and its probiotic content may inhibit S. mutans growth and the effect may be moderated by the type of sugar added for LcY cultivation.
Collapse
Affiliation(s)
- Ching-Yi Wu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ssu-Jung He
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kwei Mar
- Department of Community Dentistry, Zhong-Xiao Branch, Taipei City Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Ying Stephen Hsu
- Department of Dentistry, Faculty of Dentistry, National University of Singapore, Singapore
| | - Shan-Ling Hung
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Community Dentistry, Zhong-Xiao Branch, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Imlay JA. Where in the world do bacteria experience oxidative stress? Environ Microbiol 2018; 21:521-530. [PMID: 30307099 DOI: 10.1111/1462-2920.14445] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species - superoxide, hydrogen peroxide and hydroxyl radicals - have long been suspected of constraining bacterial growth in important microbial habitats and indeed of shaping microbial communities. Over recent decades, studies of paradigmatic organisms such as Escherichia coli, Salmonella typhimurium, Bacillus subtilis and Saccharomyces cerevisiae have pinpointed the biomolecules that oxidants can damage and the strategies by which microbes minimize their injuries. What is lacking is a good sense of the circumstances under which oxidative stress actually occurs. In this MiniReview several potential natural sources of oxidative stress are considered: endogenous ROS formation, chemical oxidation of reduced species at oxic-anoxic interfaces, H2 O2 production by lactic acid bacteria, the oxidative burst of phagocytes and the redox-cycling of secreted small molecules. While all of these phenomena can be reproduced and verified in the lab, the actual quantification of stress in natural habitats remains lacking - and, therefore, we have a fundamental hole in our understanding of the role that oxidative stress actually plays in the biosphere.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
12
|
Redanz S, Cheng X, Giacaman RA, Pfeifer CS, Merritt J, Kreth J. Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol Oral Microbiol 2018; 33:337-352. [PMID: 29897662 DOI: 10.1111/omi.12231] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Abstract
The majority of commensal oral streptococci are able to generate hydrogen peroxide (H2 O2 ) during aerobic growth, which can diffuse through the cell membrane and inhibit competing species in close proximity. Competing H2 O2 production is mainly dependent upon the pyruvate oxidase SpxB, and to a lesser extent the lactate oxidase LctO, both of which are important for energy generation in aerobic environments. Several studies point to a broad impact of H2 O2 production in the oral environment, including a potential role in biofilm homeostasis, signaling, and interspecies interactions. Here, we summarize the current research regarding oral streptococcal H2 O2 generation, resistance mechanisms, and the ecological impact of H2 O2 production. We also discuss the potential therapeutic utility of H2 O2 for the prevention/treatment of dysbiotic diseases as well as its potential role as a biomarker of oral health.
Collapse
Affiliation(s)
- Sylvio Redanz
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Xingqun Cheng
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,The Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), University of Talca, Talca, Chile
| | - Carmen S Pfeifer
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|