1
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
2
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Wu KY, Dhaliwal JK, Sasitharan A, Kalevar A. Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects. Pharmaceutics 2024; 16:1299. [PMID: 39458628 PMCID: PMC11510658 DOI: 10.3390/pharmaceutics16101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are leading causes of vision loss, with AMD affecting older populations and RP being a rarer, genetically inherited condition. Both diseases result in progressive retinal degeneration, for which current treatments remain inadequate in advanced stages. This review aims to provide an overview of the retina's anatomy and physiology, elucidate the pathophysiology of AMD and RP, and evaluate emerging cell-based therapies for these conditions. Methods: A comprehensive review of the literature was conducted, focusing on cell therapy approaches, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells. Preclinical and clinical studies were analyzed to assess therapeutic potential, with attention to mechanisms such as cell replacement, neuroprotection, and paracrine effects. Relevant challenges, including ethical concerns and clinical translation, were also explored. Results: Cell-based therapies demonstrate potential for restoring retinal function and slowing disease progression through mechanisms like neuroprotection and cell replacement. Preclinical trials show promising outcomes, but clinical studies face significant hurdles, including challenges in cell delivery and long-term efficacy. Combination therapies integrating gene editing and biomaterials offer potential future advancements. Conclusions: While cell-based therapies for AMD and RP have made significant progress, substantial barriers to clinical application remain. Further research is essential to overcome these obstacles, improve delivery methods, and ensure the safe and effective translation of these therapies into clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Jaskarn K. Dhaliwal
- Faculty of Health Sciences, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Akash Sasitharan
- Faculty of Medicine and Health Sciences, Department of Medicine, McGill University, Montreal, QC H3A 0GA, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
4
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
5
|
L'Abbate D, Prescott K, Geraghty B, Kearns VR, Steel DHW. Biomechanical considerations for optimising subretinal injections. Surv Ophthalmol 2024; 69:722-732. [PMID: 38797394 DOI: 10.1016/j.survophthal.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Subretinal injection is the preferred delivery technique for various novel ocular therapies and is widely used because of its precision and efficient delivery of gene and cell therapies; however, choosing an injection point and defining delivery parameters to target a specified retinal location and area is an inexact science. We provide an overview of the key factors that play important roles during subretinal injections to refine the technique, enhance patient outcomes, and minimise risks. We describe the role of anatomical and physical variables that affect subretinal bleb propagation and shape and their impact on retinal integrity. We highlight the risks associated with subretinal injections and consider strategies to mitigate reflux and retinal trauma. Finally, we explore the emerging field of robotic assistance in improving intraocular manouvrability and precision to facilitate the injection procedure.
Collapse
Affiliation(s)
- Dario L'Abbate
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kia Prescott
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brendan Geraghty
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - David H W Steel
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Sunderland Eye Infirmary, Sunderland, UK; Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
6
|
Trincão-Marques J, Ayton LN, Hickey DG, Marques-Neves C, Guymer RH, Edwards TL, Sousa DC. Gene and cell therapy for age-related macular degeneration: A review. Surv Ophthalmol 2024; 69:665-676. [PMID: 38735629 DOI: 10.1016/j.survophthal.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss among the elderly in Western communities, with an estimated global prevalence of 10 - 20% in people older than 65 years. AMD leads to central vision loss due to degeneration of the photoreceptors, retinal pigment epithelium and the choriocapillaris. Beckman's classification for AMD, based upon color fundus photographs, divides the disease into early, intermediate, and late forms. The late, vision-threatening stage includes both neovascular AMD and geographic atrophy. Despite its high prevalence and impact on patients' quality of life, treatment options for AMD are limited. While neovascular AMD can be medically managed with anti-VEGF intravitreal injections, until very recently there has been no approved treatment options for atrophic AMD; however, in February 2023 the first treatment for geographic atrophy - pegcetacoplan - was approved by the US FDA. We describe the current landscape of potential gene and cell therapeutic strategies for late-stage AMD, with an emphasis on the therapeutic options that might become available in the next few years.
Collapse
Affiliation(s)
- José Trincão-Marques
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Vision Sciences Study Centre, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Carlos Marques-Neves
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Vision Sciences Study Centre, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - David Cordeiro Sousa
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia; Vision Sciences Study Centre, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
7
|
MacLaren RE, Audo I, Fischer MD, Huckfeldt RM, Lam BL, Pennesi ME, Sisk R, Gow JA, Li J, Zhu K, Tsang SF. An Open-Label Phase II Study Assessing the Safety of Bilateral, Sequential Administration of Retinal Gene Therapy in Participants with Choroideremia: The GEMINI Study. Hum Gene Ther 2024; 35:564-575. [PMID: 38970425 DOI: 10.1089/hum.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Choroideremia, an incurable, progressive retinal degeneration primarily affecting young men, leads to sight loss. GEMINI was a multicenter, open-label, prospective, two-period, interventional Phase II study assessing the safety of bilateral sequential administration of timrepigene emparvovec, a gene therapy, in adult males with genetically confirmed choroideremia (NCT03507686, ClinicalTrials.gov). Timrepigene emparvovec is an adeno-associated virus serotype 2 vector encoding the cDNA of Rab escort protein 1, augmented by a downstream woodchuck hepatitis virus post-transcriptional regulatory element. Up to 0.1 mL of timrepigene emparvovec, containing 1 × 1011 vector genomes, was administered by subretinal injection following vitrectomy and retinal detachment. The second eye was treated after an intrasurgery window of <6, 6-12, or >12 months. Each eye was followed at up to nine visits over 12 months. Overall, 66 participants received timrepigene emparvovec, and 53 completed the study. Visual acuity (VA) was generally maintained in both eyes, independent of intrasurgery window duration, even after bilateral retinal detachment and subretinal injection. Bilateral treatment was well tolerated, with predominantly mild or moderate treatment-emergent adverse events (TEAEs) and a low rate of serious surgical complications (7.6%). Retinal inflammation TEAEs were reported in 45.5% of participants, with similar rates in both eyes; post hoc analyses found that these were not associated with clinically significant vision loss at month 12 versus baseline. Two participants (3.0%) reported serious noninfective retinitis. Prior timrepigene emparvovec exposure did not increase the risk of serious TEAEs or serious ocular TEAEs upon injection of the second eye; furthermore, no systemic immune reaction or inoculation effect was observed. Presence of antivector neutralizing antibodies at baseline was potentially associated with a higher percentage of TEAEs related to ocular inflammation or reduced VA after injection of the first eye. The GEMINI study results may inform decisions regarding bilateral sequential administration of other gene therapies for retinal diseases.
Collapse
Affiliation(s)
- Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Rachel M Huckfeldt
- MEE Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Sisk
- Cincinnati Eye Institute, Blue Ash, Ohio, USA
| | | | - Jiang Li
- Biogen Inc., Cambridge, Massachusetts, USA
| | - Kan Zhu
- Biogen Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
8
|
Rowe LW, Ciulla TA. Long-acting delivery and therapies for neovascular age-related macular degeneration. Expert Opin Biol Ther 2024; 24:799-814. [PMID: 38953649 DOI: 10.1080/14712598.2024.2374869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Neovascular age-related macular degeneration (nAMD) represents a leading cause of severe visual impairment in individuals over 50 years of age in developed nations. Intravitreal anti-vascular endothelial growth factor (VEGF) injections have become the standard of care for treating nAMD; however, monthly or bimonthly dosing represents significant time and cost burden due to the disease's chronic nature and limited medication half-life. AREAS COVERED This review summarizes innovative therapeutics and delivery methods for nAMD. Emerging methods for extended drug delivery include high molar concentration anti-VEGF drugs, intravitreal sustained-release polymers and devices, reservoirs for intravitreal delivery, suprachoroidal delivery of small molecular suspensions and gene therapy biofactories. In addition to VEGF-A, therapies targeting inhibition of VEGF-C and D, the angiopoetin-2 (Ang-2)/Tie-2 pathway, tyrosine kinases, and integrins are reviewed. EXPERT OPINION The evolving therapeutic landscape of nAMD is rapidly expanding our toolkit for effective and durable treatment. Recent FDA approvals of faricimab (Vabysmo) and high-dose aflibercept (Eylea HD) for nAMD with potential extension of injection intervals up to four months have been promising developments for patients and providers alike. Further research and innovation, including novel delivery techniques and pharmacologic targets, is necessary to validate the efficacy of developing therapeutics and characterize real-world outcomes, demonstrating promise in expanding treatment durability.
Collapse
Affiliation(s)
- Lucas W Rowe
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
9
|
Chambers CZ, Soo GL, Engel AL, Glass IA, Frassetto A, Martini PGV, Cherry TJ. Lipid Nanoparticle-Mediated Delivery of mRNA Into the Mouse and Human Retina and Other Ocular Tissues. Transl Vis Sci Technol 2024; 13:7. [PMID: 38980261 PMCID: PMC11235142 DOI: 10.1167/tvst.13.7.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/18/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Lipid nanoparticles (LNPs) show promise in their ability to introduce mRNA to drive protein expression in specific cell types of the mammalian eye. Here, we examined the ability of mRNA encapsulated in LNPs with two distinct formulations to drive gene expression in mouse and human retina and other ocular tissues. Methods We introduced mRNA-carrying LNPs into two biological systems. Intravitreal injections were tested to deliver LNPs into the mouse eye. Human retinal pigment epithelium (RPE) and retinal explants were used to assess mRNA expression in human tissue. We analyzed specificity of expression using histology, immunofluorescence, and imaging. Results In mice, mRNAs encoding GFP and ciliary neurotrophic factor (CNTF) were specifically expressed by Müller glia and RPE. Acute inflammatory changes measured by microglia distribution (Iba-1) or interleukin-6 (IL-6) expression were not observed 6 hours post-injection. Human RPE also expressed high levels of GFP. Human retinal explants expressed GFP in cells with apical and basal processes consistent with Müller glia and in perivascular cells consistent with macrophages. Conclusions We demonstrated the ability to reliably transfect subpopulations of retinal cells in mouse eye tissues in vivo and in human ocular tissues. Of significance, intravitreal injections were sufficient to transfect the RPE in mice. To our knowledge, we demonstrate delivery of mRNA using LNPs in human ocular tissues for the first time. Translational Relevance Ocular gene-replacement therapies using non-viral vector methods are a promising alternative to adeno-associated virus (AAV) vectors. Our studies show that mRNA LNP delivery can be used to transfect retinal cells in both mouse and human tissues without inducing significant inflammation. This methodology could be used to transfect retinal cell lines, tissue explants, mice, or potentially as gene-replacement therapy in a clinical setting in the future.
Collapse
Affiliation(s)
- Cheri Z. Chambers
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gillian L. Soo
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Abbi L. Engel
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ian A. Glass
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - the Birth Defects Research Laboratory (BDRL)
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Moderna, Inc., Cambridge, MA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | | | - Timothy J. Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| |
Collapse
|
10
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
11
|
Poh SSJ, Sia JT, Yip MYT, Tsai ASH, Lee SY, Tan GSW, Weng CY, Kadonosono K, Kim M, Yonekawa Y, Ho AC, Toth CA, Ting DSW. Artificial Intelligence, Digital Imaging, and Robotics Technologies for Surgical Vitreoretinal Diseases. Ophthalmol Retina 2024; 8:633-645. [PMID: 38280425 DOI: 10.1016/j.oret.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
OBJECTIVE To review recent technological advancement in imaging, surgical visualization, robotics technology, and the use of artificial intelligence in surgical vitreoretinal (VR) diseases. BACKGROUND Technological advancements in imaging enhance both preoperative and intraoperative management of surgical VR diseases. Widefield imaging in fundal photography and OCT can improve assessment of peripheral retinal disorders such as retinal detachments, degeneration, and tumors. OCT angiography provides a rapid and noninvasive imaging of the retinal and choroidal vasculature. Surgical visualization has also improved with intraoperative OCT providing a detailed real-time assessment of retinal layers to guide surgical decisions. Heads-up display and head-mounted display utilize 3-dimensional technology to provide surgeons with enhanced visual guidance and improved ergonomics during surgery. Intraocular robotics technology allows for greater surgical precision and is shown to be useful in retinal vein cannulation and subretinal drug delivery. In addition, deep learning techniques leverage on diverse data including widefield retinal photography and OCT for better predictive accuracy in classification, segmentation, and prognostication of many surgical VR diseases. CONCLUSION This review article summarized the latest updates in these areas and highlights the importance of continuous innovation and improvement in technology within the field. These advancements have the potential to reshape management of surgical VR diseases in the very near future and to ultimately improve patient care. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Stanley S J Poh
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Josh T Sia
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Michelle Y T Yip
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Gavin S W Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Christina Y Weng
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | | | - Min Kim
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoshihiro Yonekawa
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Allen C Ho
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cynthia A Toth
- Departments of Ophthalmology and Biomedical Engineering, Duke University, Durham, North Carolina
| | - Daniel S W Ting
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Byers Eye Institute, Stanford University, Palo Alto, California.
| |
Collapse
|
12
|
Rowe LW, Ciulla TA. Gene Therapy for Non-Hereditary Retinal Disease: Age-Related Macular Degeneration, Diabetic Retinopathy, and Beyond. Genes (Basel) 2024; 15:720. [PMID: 38927656 PMCID: PMC11203163 DOI: 10.3390/genes15060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Gene therapy holds promise as a transformative approach in the treatment landscape of age-related macular degeneration (AMD), diabetic retinopathy (DR), and diabetic macular edema (DME), aiming to address the challenges of frequent intravitreal anti-vascular endothelial growth factor (VEGF) injections. This manuscript reviews ongoing gene therapy clinical trials for these disorders, including ABBV-RGX-314, ixoberogene soroparvovec (ixo-vec), and 4D-150. ABBV-RGX-314 utilizes an adeno-associated virus (AAV) vector to deliver a transgene encoding a ranibizumab-like anti-VEGF antibody fragment, demonstrating promising results in Phase 1/2a and ongoing Phase 2b/3 trials. Ixo-vec employs an AAV2.7m8 capsid for intravitreal delivery of a transgene expressing aflibercept, showing encouraging outcomes in Phase 1 and ongoing Phase 2 trials. 4D-150 utilizes an evolved vector to express both aflibercept and a VEGF-C inhibitory RNAi, exhibiting positive interim results in Phase 1/2 studies. Other therapies reviewed include EXG102-031, FT-003, KH631, OLX10212, JNJ-1887, 4D-175, and OCU410. These therapies offer potential advantages of reduced treatment frequency and enhanced safety profiles, representing a paradigm shift in management towards durable and efficacious cellular-based biofactories. These advancements in gene therapy hold promise for improving outcomes in AMD and addressing the complex challenges of DME and DR, providing new avenues for the treatment of diabetic eye diseases.
Collapse
Affiliation(s)
- Lucas W. Rowe
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Thomas A. Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Retina Service, Midwest Eye Institute, Indianapolis, IN 46290, USA
| |
Collapse
|
13
|
Zhang W, Kaser-Eichberger A, Fan W, Platzl C, Schrödl F, Heindl LM. The structure and function of the human choroid. Ann Anat 2024; 254:152239. [PMID: 38432349 DOI: 10.1016/j.aanat.2024.152239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In this manuscript, the structure of the human choroid is reviewed with emphasis of the macro- and microscopic anatomy including Bruch's membrane, choriocapillaris, Sattler's and Haller's layer, and the suprachoroid. We here discuss the development of the choroid, as well as the question of choroidal lymphatics, and further the neuronal control of this tissue, as well as the pathologic angiogenesis. Wherever possible, functional aspects of the various structures are included and reviewed.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanlin Fan
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schrödl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Łajczak PM, Nawrat Z. Sharper vision, steady hands: can robots improve subretinal drug delivery? Systematic review. J Robot Surg 2024; 18:235. [PMID: 38819533 PMCID: PMC11142954 DOI: 10.1007/s11701-024-01991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Subretinal injection (SI) is a novel drug delivery method, directly to retina for treatment of various eye disease. However, manual injection requires surgical experience and precision due to physiological factors. Robots offer solution to this issue, by reducing hand tremor and increased accuracy. This systematic review analyzes current status on robot-assisted SI compared to conventional techniques. Systematic search across 5 databases was conducted to identify studies comparing manual and robot-assisted SI procedures. Extracted data included robotic systems, complications, and success rates. Four studies, including one human trial, two ex vivo porcine eye studies, and one artificial eye model study were included in the synthesis. The findings show early advantages of robot-assisted SI. Compared to traditional interventions, robot procedures result in reduced tremor, what potentially lowers the risk of complications, including retinal tears and reflux. The first in-human randomized trial showed encouraging results, with no significant differences in surgical times or complications between robot-assisted and manual SI. However, major limitation of robot-assisted procedures is longer procedure time. Robot-assisted SI holds promise by offering increased precision and stability, reducing human error and potentially improving clinical outcomes. Challenges include cost, availability, and learning curve. Overall, early stage of robot-assisted SI suggests advantages in precision, complication reduction, and potentially improved drug delivery. Further research in human randomized trials is needed to fully assess its full-scale clinical application.
Collapse
Affiliation(s)
- Paweł Marek Łajczak
- Zbigniew Religa Student Scientific Club at Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 18, 40-043, Zabrze, Poland.
| | - Zbigniew Nawrat
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 18, 40-043, Zabrze, Poland
- Foundation of Cardiac Surgery Development, 41-808, Zabrze, Poland
| |
Collapse
|
15
|
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life (Basel) 2024; 14:668. [PMID: 38929652 PMCID: PMC11204673 DOI: 10.3390/life14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease.
Collapse
Affiliation(s)
- Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Ruxandra Angela Pirvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Otilia Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihai Alexandru Ionescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
16
|
Sun D, Sun W, Gao SQ, Lehrer J, Wang H, Hall R, Lu ZR. Intravitreal Delivery of PEGylated-ECO Plasmid DNA Nanoparticles for Gene Therapy of Stargardt Disease. Pharm Res 2024; 41:807-817. [PMID: 38443629 DOI: 10.1007/s11095-024-03679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Hong Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Ryan Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States.
| |
Collapse
|
17
|
Xu S, Hu B, Liu R, Zhao X, Sun M. Liquid-Driven Microinjection System for Precise Fundus Injection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2140. [PMID: 38610350 PMCID: PMC11014097 DOI: 10.3390/s24072140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Microinjection is usually applied to the treatment of some retinal disorders, such as retinal vein cannulation and displaced submacular hemorrhage. Currently, the microinjection procedure is usually performed by using the viscous fluid control of a standard vitrectomy system, which applies a fixed air pressure through foot pedal activation. The injection process with the fixed pressure is uncontrollable and lacks feedback, the high flow rate of the injected drug may cause damage to the fundus tissue. In this paper, a liquid-driven microinjection system with a flow sensor is designed and developed specifically for fundus injection. In addition, a PID sliding mode control (SMC) method is proposed to achieve precise injection in the injection system. The experimental results of fundus simulation injection demonstrate that the microinjection system meets the requirements of fundus injection and reduces the impact of the injection process on the fundus tissue.
Collapse
Affiliation(s)
- Shiyu Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotics, Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China; (S.X.); (B.H.); (R.L.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Bo Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotics, Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China; (S.X.); (B.H.); (R.L.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Rongxin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotics, Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China; (S.X.); (B.H.); (R.L.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Xin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotics, Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China; (S.X.); (B.H.); (R.L.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Mingzhu Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotics, Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China; (S.X.); (B.H.); (R.L.); (X.Z.)
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| |
Collapse
|
18
|
Liu Y, Song D, Zhang G, Bu Q, Dong Y, Hu C, Shi C. A Novel Electromagnetic Driving System for 5-DOF Manipulation in Intraocular Microsurgery. CYBORG AND BIONIC SYSTEMS 2024; 5:0083. [PMID: 38533379 PMCID: PMC10964225 DOI: 10.34133/cbsystems.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 03/28/2024] Open
Abstract
This work presents a novel electromagnetic driving system that consists of eight optimized electromagnets arranged in an optimal configuration and employs a control framework based on an active disturbance rejection controller (ADRC) and virtual boundary. The optimal system configuration enhances the system's compatibility with other ophthalmic surgical instruments, while also improving its capacity to generate magnetic force in the vertical direction. Besides, the optimal electromagnet parameters provide a superior comprehensive performance on magnetic field generation capacity and thermal power. Hence, the presented design achieves a stronger capacity for sustained work. Furthermore, the ADRC controller effectively monitors and further compensates the total disturbance as well as gravity to enhance the system's robustness. Meanwhile, the implementation of virtual boundaries substantially enhances interactive security via collision avoidance. The magnetic and thermal performance tests have been performed on the electromagnet to verify the design optimization. The proposed electromagnet can generate a superior magnetic field of 2.071 mT at a distance of 65 mm with an applied current of 1 A. Moreover, it demonstrates minimal temperature elevation from room temperature (25 °C) to 46 °C through natural heat dissipation in 3 h, thereby effectively supporting prolonged magnetic manipulation of intraocular microsurgery. Furthermore, trajectory tracking experiments with disturbances have been performed in a liquid environment similar to the practical ophthalmic surgery scenarios, to verify the robustness and security of the presented control framework. The maximum root mean square (RMS) error of performance tests in different operation modes remains 35.8 μm, providing stable support for intraocular microsurgery.
Collapse
Affiliation(s)
- Yangyu Liu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Dezhi Song
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Guanghao Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Qingyu Bu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Yuanqing Dong
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| | - Chengzhi Hu
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Department of Mechanical and Energy Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaoyang Shi
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
20
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
21
|
Alamdar A, Usevitch DE, Wu J, Taylor RH, Gehlbach P, Iordachita I. Steady-Hand Eye Robot 3.0: Optimization and Benchtop Evaluation for Subretinal Injection. IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2024; 6:135-145. [PMID: 38304756 PMCID: PMC10831842 DOI: 10.1109/tmrb.2023.3336975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Subretinal injection methods and other procedures for treating retinal conditions and diseases (many considered incurable) have been limited in scope due to limited human motor control. This study demonstrates the next generation, cooperatively controlled Steady-Hand Eye Robot (SHER 3.0), a precise and intuitive-to-use robotic platform achieving clinical standards for targeting accuracy and resolution for subretinal injections. The system design and basic kinematics are reported and a deflection model for the incorporated delta stage and validation experiments are presented. This model optimizes the delta stage parameters, maximizing the global conditioning index and minimizing torsional compliance. Five tests measuring accuracy, repeatability, and deflection show the optimized stage design achieves a tip accuracy of < 30 μm, tip repeatability of 9.3 μm and 0.02°, and deflections between 20-350 μm/N. Future work will use updated control models to refine tip positioning outcomes and will be tested on in vivo animal models.
Collapse
Affiliation(s)
- Alireza Alamdar
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD USA
| | - David E. Usevitch
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD USA
| | - Jiahao Wu
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD USA
| | - Russell H. Taylor
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD USA
| | - Peter Gehlbach
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
22
|
van der Veen I, Heredero Berzal A, Koster C, ten Asbroek ALMA, Bergen AA, Boon CJF. The Road towards Gene Therapy for X-Linked Juvenile Retinoschisis: A Systematic Review of Preclinical Gene Therapy in Cell-Based and Rodent Models of XLRS. Int J Mol Sci 2024; 25:1267. [PMID: 38279267 PMCID: PMC10816913 DOI: 10.3390/ijms25021267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.
Collapse
Affiliation(s)
- Isa van der Veen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Céline Koster
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (I.v.d.V.); (A.H.B.); (C.K.); (A.A.B.)
- Department of Ophthalmology, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
23
|
Esposito EP, Han IC, Johnson TV. Gene and cell-based therapies for retinal and optic nerve disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:243-262. [PMID: 39341657 DOI: 10.1016/b978-0-323-90120-8.00016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Leading causes of blindness worldwide include neurodegenerative diseases of the retina, which cause irreversible loss of retinal pigment epithelium (RPE) and photoreceptors, and optic neuropathies, which result in retinal ganglion cell (RGC) death. Because photoreceptor and RGCs do not spontaneously regenerate in mammals, including humans, vision loss from these conditions is, at present, permanent. Recent advances in gene and cell-based therapies have provided new hope to patients affected by these conditions. This chapter reviews the current state and future of these approaches to treating ocular neurodegenerative disease. Gene therapies for retinal degeneration and optic neuropathies primarily focus on correcting known pathogenic mutations that cause inherited conditions to halt progression. There are multiple retinal and optic neuropathy gene therapies in clinical trials, and one retinal gene therapy is approved in the United States, Canada, Europe, and Australia. Cell-based therapies are mutation agnostic and have the potential to repopulate neurons regardless of the underlying etiology of degeneration. While photoreceptor cell replacement is nearing a human clinical trial, RPE transplantation is currently in phase I/II clinical trials. RGC replacement faces numerous logistical challenges, but preclinical research has laid the foundation for functional repair of optic neuropathies to be feasible.
Collapse
Affiliation(s)
- Edward P Esposito
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas V Johnson
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
24
|
Parashar R, Vyas A, Sah AK, Hemnani N, Thangaraju P, Suresh PK. Recent Updates on Nanocarriers for Drug Delivery in Posterior Segment Diseases with Emphasis on Diabetic Retinopathy. Curr Diabetes Rev 2024; 20:e171023222282. [PMID: 37855359 DOI: 10.2174/0115733998240053231009060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 10/20/2023]
Abstract
In recent years, various conventional formulations have been used for the treatment and/or management of ocular medical conditions. Diabetic retinopathy, a microvascular disease of the retina, remains the leading cause of visual disability in patients with diabetes. Currently, for treating diabetic retinopathy, only intraocular, intravitreal, periocular injections, and laser photocoagulation are widely used. Frequent administration of these drugs by injections may lead to serious complications, including retinal detachment and endophthalmitis. Although conventional ophthalmic formulations like eye drops, ointments, and suspensions are available globally, these formulations fail to achieve optimum drug therapeutic profile due to immediate nasolacrimal drainage, rapid tearing, and systemic tearing toxicity of the drugs. To achieve better therapeutic outcomes with prolonged release of the therapeutic agents, nano-drug delivery materials have been investigated. These nanocarriers include nanoparticles, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), dendrimers, nanofibers, in-situ gel, vesicular carriers, niosomes, and mucoadhesive systems, among others. The nanocarriers carry the potential benefits of site-specific delivery and controlled and sustained drug release profile. In the present article, various nanomaterials explored for treating diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Ravi Parashar
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | - Amber Vyas
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | - Abhishek K Sah
- Department of Pharmacy, Shri Govindram Seksariya Institute of Technology & Science (SGSITS), 23-Park Road, Indore, 452003 (M.P.), India
| | - Narayan Hemnani
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| | | | - Preeti K Suresh
- University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, (C.G.), India
| |
Collapse
|
25
|
Huang CW, Yang HY, Chen TC, Chen CW. Analysis on key parameters in subretinal injection facilitating a predictable and automated robot-assisted treatment in gene therapy. Int J Med Robot 2023; 19:e2560. [PMID: 37583359 DOI: 10.1002/rcs.2560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Subretinal injection (SRI) has become an important surgical method for treating vitreoretinal diseases. Nevertheless, the optimisation of bleb formation in SRI, for the attainment of desired therapeutic outcomes, still requires further investigation. METHODS This study analysed the influence of surgical parameters on SRI using a robotic setup. The surgical procedure was automated using visual guidance. A predictive model for bleb formation was established through regression analysis. To validate the model, we compared the clinical data's target area with the simulated SRI's actual area using parameters determined by the predictive model. RESULTS The insertion angle dominated the eccentricity and area of the bleb. The injection speed dominated the axial angle. Automated SRI increased success rate and produced predictable outcomes. CONCLUSIONS We could provide accurate SRI on phantom models by adjusting surgical parameters based on the patient's clinical information. Automatic robot-assisted SRI is a promising surgical technique with highly predictable results.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yu Yang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Center of Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Wei Chen
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Zhu S, Yan Q, Wang L, Zhu Y, Luo S. Noninvasive Framework Nucleic Acid Eye Drops for Retinal Administration. ACS APPLIED BIO MATERIALS 2023; 6:5078-5085. [PMID: 37861694 DOI: 10.1021/acsabm.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Intravitreal injection is widely employed for the treatment of retinal diseases. However, it suffers from various drawbacks, including ocular trauma, risk of infection, and poor patient compliance due to frequent administrations. Due to the presence of barriers such as the cornea, it has been a challenge to develop efficient noninvasive ophthalmic eye drops that can reach the retina. Framework nucleic acids (FNAs), known for their excellent biocompatibility and precise, controllable shape and size, have been extensively utilized in drug delivery application. Here, we report the development of size- and shape-resolved fluorescent DNA frameworks for noninvasive retinal administration. Results show that tetrahedral DNA nanostructures (TDNs) with an edge length of 20 bp can reach the retina within 6 h with the highest efficiency. Moreover, this delivery method exhibits excellent biocompatibility. Our findings provide an approach for the development of localized treatment strategies for retinal diseases using FNA-based nanocarriers.
Collapse
Affiliation(s)
- Shitai Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
27
|
Wang T, Li H, Pu T, Yang L. Microsurgery Robots: Applications, Design, and Development. SENSORS (BASEL, SWITZERLAND) 2023; 23:8503. [PMID: 37896597 PMCID: PMC10611418 DOI: 10.3390/s23208503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Microsurgical techniques have been widely utilized in various surgical specialties, such as ophthalmology, neurosurgery, and otolaryngology, which require intricate and precise surgical tool manipulation on a small scale. In microsurgery, operations on delicate vessels or tissues require high standards in surgeons' skills. This exceptionally high requirement in skills leads to a steep learning curve and lengthy training before the surgeons can perform microsurgical procedures with quality outcomes. The microsurgery robot (MSR), which can improve surgeons' operation skills through various functions, has received extensive research attention in the past three decades. There have been many review papers summarizing the research on MSR for specific surgical specialties. However, an in-depth review of the relevant technologies used in MSR systems is limited in the literature. This review details the technical challenges in microsurgery, and systematically summarizes the key technologies in MSR with a developmental perspective from the basic structural mechanism design, to the perception and human-machine interaction methods, and further to the ability in achieving a certain level of autonomy. By presenting and comparing the methods and technologies in this cutting-edge research, this paper aims to provide readers with a comprehensive understanding of the current state of MSR research and identify potential directions for future development in MSR.
Collapse
Affiliation(s)
- Tiexin Wang
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Haoyu Li
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
| | - Tanhong Pu
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
| | - Liangjing Yang
- ZJU-UIUC Institute, International Campus, Zhejiang University, Haining 314400, China; (T.W.); (H.L.); (T.P.)
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Mechanical Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Chen X, Xu N, Li J, Zhao M, Huang L. Stem cell therapy for inherited retinal diseases: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:286. [PMID: 37798796 PMCID: PMC10557171 DOI: 10.1186/s13287-023-03526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Stem cell therapy is a promising therapeutic approach for inherited retinal diseases (IRDs). This study aims to quantitatively examine the effectiveness and safety of stem cell therapy for patients with IRDs, including retinitis pigmentosa and Stargardt disease (STGD). METHODS We searched PubMed, EMBASE, Web of Science, Cochrane Library databases, and the ClinicalTrials.gov website. The latest retrieval time was August 20, 2023. The primary outcomes were rates and mean difference (MD) of best-corrected visual acuity (BCVA) improvement. Subgroup analyses were conducted according to administration routes and stem cell types. This study was registered with PROSPERO (CRD42022349271). RESULTS Twenty-one prospective studies, involving 496 eyes (404 RP and 92 STGD) of 382 patients (306 RP and 76 STGD), were included in this study. For RP, the rate of BCVA improvement was 49% and 30% at 6 months and 12 months, respectively, and the BCVA was significantly improved in the operative eyes at 6 months post-treatment (MD = - 0.12 logMAR, 95% CI .17 to - 0.06 logMAR; P < 0.001), while there was no significant difference at 12 months post-treatment (MD = -0.06 logMAR; 95% CI - 0.13 to 0.01 logMAR; P = 0.10). For STGD, the rate of BCVA improvement was 60% and 55% at 6 months and 12 months, respectively, and the BCVA was significantly improved in the operative eyes at 6 months (MD = - 0.14 logMAR, 95% CI - 0.22 to - 0.07 logMAR; P = 0.0002) and 12 months (MD = - 0.17 logMAR, 95% CI - 0.29 to - 0.04 logMAR; P = 0.01). Subgroup analyses showed suprachoroidal space injection of stem cells may be more efficient for RP. Eleven treated-related ocular adverse events from three studies and no related systemic adverse events were reported. CONCLUSIONS This study suggests stem cell therapy may be effective and safe for patients with RP or STGD. The long-term vision improvement may be limited for RP patients. Suprachoroidal space injection of stem cells may be a promising administration route for RP patients. Limited by the low grade of evidence, large sample size randomized clinical trials are required in the future.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China.
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.
- College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
29
|
Zeng S, Chen Y, Zhou F, Zhang T, Fan X, Chrzanowski W, Gillies MC, Zhu L. Recent advances and prospects for lipid-based nanoparticles as drug carriers in the treatment of human retinal diseases. Adv Drug Deliv Rev 2023; 199:114965. [PMID: 37315899 DOI: 10.1016/j.addr.2023.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
The delivery of cures for retinal diseases remains problematic. There are four main challenges: passing through multiple barriers of the eye, the delivery to particular retinal cell types, the capability to carry different forms of therapeutic cargo and long-term therapeutic efficacy. Lipid-based nanoparticles (LBNPs) are potent to overcome these challenges due to their unique merits: amphiphilic nanoarchitectures to pass biological barriers, vary modifications with specific affinity to target cell types, flexible capacity for large and mixed types of cargos and slow-release formulations for long-term treatment. We have reviewed the latest research on the applications of LBNPs for treating retinal diseases and categorized them by different payloads. Furthermore, we identified technical barriers and discussed possible future development for LBNPs to expand the therapeutic potential in treating retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yingying Chen
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ting Zhang
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Mark C Gillies
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Macula Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
30
|
Han JW, Chang HS, Yang JY, Choi HS, Park HS, Jun HO, Choi JH, Paik SS, Chung KH, Shin HJ, Nam S, Son JH, Lee SH, Lee EJ, Seo KY, Lyu J, Kim JW, Kim IB, Park TK. Intravitreal Administration of Retinal Organoids-Derived Exosomes Alleviates Photoreceptor Degeneration in Royal College of Surgeons Rats by Targeting the Mitogen-Activated Protein Kinase Pathway. Int J Mol Sci 2023; 24:12068. [PMID: 37569444 PMCID: PMC10419150 DOI: 10.3390/ijms241512068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Increasing evidence suggests that exosomes are involved in retinal cell degeneration, including their insufficient release; hence, they have become important indicators of retinopathies. The exosomal microRNA (miRNA), in particular, play important roles in regulating ocular and retinal cell functions, including photoreceptor maturation, maintenance, and visual function. Here, we generated retinal organoids (ROs) from human induced pluripotent stem cells that differentiated in a conditioned medium for 60 days, after which exosomes were extracted from ROs (Exo-ROs). Subsequently, we intravitreally injected the Exo-RO solution into the eyes of the Royal College of Surgeons (RCS) rats. Intravitreal Exo-RO administration reduced photoreceptor apoptosis, prevented outer nuclear layer thinning, and preserved visual function in RCS rats. RNA sequencing and miRNA profiling showed that exosomal miRNAs are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, the expression of MAPK-related genes and proteins was significantly decreased in the Exo-RO-treated group. These results suggest that Exo-ROs may be a potentially novel strategy for delaying retinal degeneration by targeting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jung Woo Han
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hun Soo Chang
- Department of Microbiolo and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan 31538, Republic of Korea; (H.S.C.); (J.-H.S.)
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Han Sol Choi
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hyo Song Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Hyoung Oh Jun
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Ji Hye Choi
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea; (S.-S.P.); (I.-B.K.)
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Kyung Hwun Chung
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
| | - Hee Jeong Shin
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea;
| | - Seungyeon Nam
- Department of Neuroscience and Behavior, University of Notre Dame College of Science, Notre Dame, IN 46556, USA;
| | - Ji-Hye Son
- Department of Microbiolo and BK21 FOUR Project, Soonchunhyang University College of Medicine, Cheonan 31538, Republic of Korea; (H.S.C.); (J.-H.S.)
| | - Si Hyung Lee
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
| | - Eun Jung Lee
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (E.J.L.); (J.W.K.)
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejun 32992, Republic of Korea;
| | - Jin Woo Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; (E.J.L.); (J.W.K.)
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea; (S.-S.P.); (I.-B.K.)
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.W.H.); (H.S.C.); (H.S.P.); (S.H.L.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (H.O.J.); (J.H.C.); (K.H.C.)
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea;
- oligoNgene Pharmaceutical Co., Ltd., Bucheon 31538, Republic of Korea
| |
Collapse
|
31
|
Chambers CZ, Soo GL, Engel AL, Glass IA, Frassetto A, Martini PGV, Cherry TJ. Lipid nanoparticle-mediated delivery of mRNA into the mouse and human retina and other ocular tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548758. [PMID: 37502987 PMCID: PMC10369938 DOI: 10.1101/2023.07.13.548758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Purpose Lipid nanoparticles (LNPs) show promise in their ability to introduce mRNA to drive protein expression in specific cell types of the mammalian eye. Here, we examined the ability of mRNA encapsulated in lipid nanoparticles (LNPs) with two distinct formulations to drive gene expression in mouse and human retina and other ocular tissues. Methods We introduced mRNA carrying LNPs into two biological systems. Intravitreal injections were tested to deliver LNPs into the mouse eye. Human retinal pigment epithelium (RPE) and retinal explants were used to assess mRNA expression in human tissue. We analyzed specificity of expression using histology, immunofluorescence, and imaging. Results In mice, mRNAs encoding GFP and ciliary neurotrophic factor (CNTF) were specifically expressed by Müller glia and retinal pigment epithelium (RPE). Acute inflammatory changes measured by microglia distribution (Iba-1) or interleukin-6 (IL-6) expression were not observed 6 hours post-injection. Human RPE also expressed high levels of GFP. Human retinal explants expressed GFP in cells with apical and basal processes consistent with Müller glia and in perivascular cells consistent with macrophages. Conclusions We demonstrated the ability to reliably transfect subpopulations of retinal cells in mice eye tissues in vivo and in human ocular tissues. Of significance, intravitreal injections were sufficient to transfect the RPE in mice. To our knowledge we demonstrate delivery of mRNA using LNPs in human ocular tissues for the first time.
Collapse
Affiliation(s)
- Cheri Z Chambers
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gillian L Soo
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Abbi L Engel
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ian A Glass
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Timothy J Cherry
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| |
Collapse
|
32
|
Iovino C, Rosolia A, Damiano L, Iodice CM, Di Iorio V, Testa F, Simonelli F. Pars Plana Vitrectomy in Inherited Retinal Diseases: A Comprehensive Review of the Literature. Life (Basel) 2023; 13:1241. [PMID: 37374028 DOI: 10.3390/life13061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a group of clinically and genetically heterogeneous disorders that may be complicated by several vitreoretinal conditions requiring a surgical approach. Pars plana vitrectomy (PPV) stands as a valuable treatment option in these cases, but its application in eyes with such severely impaired chorioretinal architectures remains controversial. Furthermore, the spreading of gene therapy and the increasing use of retinal prostheses will end up in a marked increase in demand for PPV surgery for IRD patients. The retinal degeneration that typically affects patients with hereditary retinal disorders may influence the execution of the surgery and the expected results. Considering the importance of PPV application in IRD-related complications, it is fundamental to try to understand from the literature what is adequate and safe in posterior eye segment surgery. Use of dyes, light toxicity, and risk of wounding scar development have always been themes that discourage the execution of vitreoretinal surgery in already impaired eyes. Therefore, this review aims to comprehensively summarize all PPV applications in different IRDs, highlighting the favorable results as well as the potential precautions to consider when performing vitreoretinal surgery in these eyes.
Collapse
Affiliation(s)
- Claudio Iovino
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Andrea Rosolia
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Luciana Damiano
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Clemente Maria Iodice
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Valentina Di Iorio
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
33
|
Yan AL, Du SW, Palczewski K. Genome editing, a superior therapy for inherited retinal diseases. Vision Res 2023; 206:108192. [PMID: 36804635 PMCID: PMC10460145 DOI: 10.1016/j.visres.2023.108192] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/17/2023]
Abstract
Gene augmentation and genome editing are promising strategies for the treatment of monogenic inherited retinal diseases. Although gene augmentation treatments are commercially available for inherited retinal diseases, there are many shortcomings that need to be addressed, like progressive retinal degeneration and diminishing efficacy over time. Innovative CRISPR-Cas9-based genome editing technologies have broadened the proportion of treatable genetic disorders and can greatly improve or complement treatment outcomes from gene augmentation. Progress in this relatively new field involves the development of therapeutics including gene disruption, ablate-and-replace strategies, and precision gene correction techniques, such as base editing and prime editing. By making direct edits to endogenous DNA, genome editing theoretically guarantees permanent gene correction and long-lasting treatment effects. Improvements to delivery modalities aimed at limiting persistent gene editor activity have displayed an improved safety profile and minimal off-target editing. Continued progress to advance precise gene correction and associated delivery strategies will establish genome editing as the preferred treatment for genetic retinal disorders. This commentary describes the applications, strengths, and drawbacks of conventional gene augmentation approaches, recent advances in precise genome editing in the retina, and promising preclinical strategies to facilitate the use of robust genome editing therapies in human patients.
Collapse
Affiliation(s)
- Alexander L Yan
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Program in Neuroscience, Amherst College, Amherst, MA 01002, USA
| | - Samuel W Du
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
34
|
Nguyen XTA, Moekotte L, Plomp AS, Bergen AA, van Genderen MM, Boon CJF. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int J Mol Sci 2023; 24:ijms24087481. [PMID: 37108642 PMCID: PMC10139437 DOI: 10.3390/ijms24087481] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Bartiméus, Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
35
|
Hakim A, Guido B, Narsineni L, Chen DW, Foldvari M. Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: progress towards non-viral systems. Adv Drug Deliv Rev 2023; 196:114781. [PMID: 36940751 DOI: 10.1016/j.addr.2023.114781] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Glaucoma is the result of the gradual death of retinal ganglion cells (RGCs) whose axons form the optic nerve. Elevated intraocular pressure (IOP) is a major risk factors thatcontributes to RGC apoptosis and axonal loss at the lamina cribrosa, resulting in progressive reduction and eventual anterograde-retrograde transport blockade of neurotrophic factors. Current glaucoma management mainly focuses on pharmacological or surgical lowering of IOP, to manage the only modifiable risk factor. Although IOP reduction delays disease progression, it does not address previous and ongoing optic nerve degeneration. Gene therapy is a promising direction to control or modify genes involved in the pathophysiology of glaucoma. Both viral and non-viral gene therapy delivery systems are emerging as promising alternatives or add-on therapies to traditional treatments for improving IOP control and provide neuroprotection. The specific spotlight on non-viral gene delivery systems shows further progress towards improving the safety of gene therapy and implementing neuroprotection by targeting specific tissues and cells in the eye and specifically in the retina.
Collapse
Affiliation(s)
- Antoine Hakim
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Benjamin Guido
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Lokesh Narsineni
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1; Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
36
|
Paliwal H, Prajapati BG, Srichana T, Singh S, Patel RJ. Novel Approaches in the Drug Development and Delivery Systems for Age-Related Macular Degeneration. Life (Basel) 2023; 13:life13020568. [PMID: 36836923 PMCID: PMC9960288 DOI: 10.3390/life13020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The number of patients with ocular disorders has increased due to contributing factors such as aging populations, environmental changes, smoking, genetic abnormalities, etc. Age-related macular degeneration (AMD) is one of the common ocular disorders which may advance to loss of vision in severe cases. The advanced form of AMD is classified into two types, dry (non-exudative) and wet (exudative) AMD. Although several therapeutic approaches are explored for the management of AMD, no approved therapy can substantially slow down the progression of dry AMD into the later stages. The focus of researchers in recent times has been engaged in developing targeted therapeutic products to halt the progression and maintain or improve vision in individuals diagnosed with AMD. The delivery of anti-VEGF agents using intravitreal therapy has found some success in managing AMD, and novel formulation approaches have been introduced in various studies to potentiate the efficacy. Some of the novel approaches, such as hydrogel, microspheres, polymeric nanoparticles, liposomes, implants, etc. have been discussed. Apart from this, subretinal, suprachoroidal, and port delivery systems have also been investigated for biologics and gene therapies. The unmet potential of approved therapeutic products has contributed to several patent applications in recent years. This review outlines the current treatment options, outcomes of recent research studies, and patent details around the novel drug delivery approach for the treatment of AMD.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
| | - Bhupendra Gopalbhai Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
- Correspondence: or ; Tel.: +91-9429225025
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
37
|
El Rayes EN, Habib AM, Soliman AH, Ibrahim OM, El Sawwah KMH. Reply. Retina 2023; 43:e8-e9. [PMID: 36695806 DOI: 10.1097/iae.0000000000003654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ehab N El Rayes
- Department of Ophthalmology, Institute of Ophthalmology, Giza, Egypt.,The Retina Eye Center, Cairo, Egypt
| | - Ahmed M Habib
- Department of Ophthalmology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ashraf H Soliman
- Department of Ophthalmology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ola M Ibrahim
- Department of Ophthalmology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
38
|
Wang L, Zhang H. Ocular barriers as a double-edged sword: preventing and facilitating drug delivery to the retina. Drug Deliv Transl Res 2023; 13:547-567. [PMID: 36129668 DOI: 10.1007/s13346-022-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
In recent decades, the growing of the aging population in the world brings increasingly heavy burden of vision-threatening retinal diseases. One of the biggest challenges in the treatment of retinal diseases is the effective drug delivery to the diseased area. Due to the existence of multiple anatomical and physiological barriers of the eye, commonly used oral drugs or topical eye drops cannot effectively reach the retinal lesions. Innovations in new drug formulations and delivery routes have been continuously applied to improve current drug delivery to the back of the eye. Unique ocular anatomical structures or physiological activities on these ocular barriers, in turn, can facilitate drug delivery to the retina if compatible formulations or delivery routes are properly designed or selected. This paper focuses on key barrier structures of the eye and summarizes advances of corresponding drug delivery means to the retina, including various local drug delivery routes by invasive approaches, as well as systemic eye drug delivery by non-invasive approaches.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhang
- Triapex Laboratories Co., Ltd No. 9 Xinglong Road, Jiangbei New Area, Jiangsu, Nanjing, China.
| |
Collapse
|
39
|
Wu J, Cho CS, Jo DH, Kim JH. Application of Base Editor-Mediated Genome Editing in Mouse Retina. Methods Mol Biol 2023; 2606:179-188. [PMID: 36592316 DOI: 10.1007/978-1-0716-2879-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Base editor is a newly developed genome editing technology that enables conversion of single nucleotides without DNA double-strand breaks (DSB) and maintains a low rate of insertion-deletion (INDEL) errors. With these flexibility and safety, base editor has been widely used in many fields, including inherited retinal disease. The majority of retinal genome editing requires intravitreal and subretinal injection delivery of the therapeutic vector in order to transduce the target cells. Here, we provide an application guide of base editor as performed in the mouse retina.
Collapse
Affiliation(s)
- Jun Wu
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Breazzano MP, Batson SA, Tsang SH, Chen RWS. Surgical Approach with Pars Plana Vitrectomy for Subretinal Gene Therapy. Methods Mol Biol 2023; 2560:393-399. [PMID: 36481913 DOI: 10.1007/978-1-0716-2651-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gene therapy is emerging as a treatment for inherited diseases including retinitis pigmentosa. Through surgery, specifically with pars plana vitrectomy, the subretinal space can be accessed to directly administer this treatment. The goal herein is to provide an overview of this approach.
Collapse
Affiliation(s)
- Mark P Breazzano
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, New York University School of Medicine, New York University Langone Health, New York, NY, USA
| | | | - Stephen H Tsang
- Departments of Ophthalmology, Pathology & Cell Biology, Graduate Programs in Nutritional & Metabolic Biology and Neurobiology & Behavior, Columbia Stem Cell Initiative, New York, NY, USA
| | - Royce W S Chen
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
41
|
Sun C, Chen S. Gene Augmentation for Autosomal Dominant CRX-Associated Retinopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:135-141. [PMID: 37440026 PMCID: PMC11010719 DOI: 10.1007/978-3-031-27681-1_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The cone-rod homeobox (CRX) protein is a key transcription factor essential for photoreceptor function and survival. Mutations in human CRX gene are linked to a wide spectrum of blinding diseases ranging from mild macular dystrophy to severe Leber congenital amaurosis (LCA), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). These diseases are still incurable and mostly inherited in an autosomal dominant form. Dysfunctional mutant CRX protein interferes with the function of wild-type CRX protein, demonstrating the dominant negative effect. At present, gene augmentation is the most promising treatment strategy for hereditary diseases. This study aims to review the pathogenic mechanisms of various CRX mutations and propose two therapeutic strategies to rescue sick photoreceptors in CRX-associated retinopathies, namely, Tet-On-hCRX system and adeno-associated virus (AAV)-mediated gene augmentation. The outcome of proposed studies will guide future translational research and suggest guidelines for therapy evaluation in terms of treatment safety and efficacy.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA.
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO, USA
- Department of Developmental Biology, Washington University, St. Louis, MO, USA
| |
Collapse
|
42
|
Yang K, Jin X, Wang Z, Fang Y, Li Z, Yang Z, Cong J, Yang Y, Huang Y, Wang L. Robot-assisted subretinal injection system: development and preliminary verification. BMC Ophthalmol 2022; 22:484. [PMID: 36510151 PMCID: PMC9744060 DOI: 10.1186/s12886-022-02720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To design and develop a surgical robot capable of assisting subretinal injection. METHODS A remote center of motion (RCM) mechanical design and a master-slave teleoperation were used to develop and manufacture the assisted subretinal surgery robot (RASR). Ten fresh isolated porcine eyes were divided into the Robot Manipulation (RM) group and Manual Manipulation (MM) group (5 eyes for each group), and subretinal injections were performed by the robot and manual manipulation methods, respectively. A preliminary verification of the robot was performed by comparing the advantages and disadvantages of the robot manipulation and manual manipulation by using optical coherent tomography (OCT), fundus photography, and video motion capture analysis after the surgery. RESULTS Both the robot and the manual manipulation were able to perform subretinal injections with a 100% success rate. The OCT results showed that the average subretinal area was 1.548 mm2 and 1.461 mm2 in the RM and MM groups, respectively (P > 0.05). Meanwhile the volume of subretinal fluid obtained using the retinal map mode built in OCT was not statistically different between the RM and MM groups (P > 0.05). By analyzing the surgical video using Kinovea, a motion capture and analysis software, the results suggest that the mean tremor amplitude of the RM group was 0.3681 pixels (x direction), which was significantly reduced compared to 18.8779 pixels (x direction) in the MM group (P < 0.0001). CONCLUSION Robot-assisted subretinal injection system (RASR) is able to finish subretinal injection surgery with better stability and less fatigue than manual manipulation.
Collapse
Affiliation(s)
- Kunkun Yang
- grid.414252.40000 0004 1761 8894Graduate School of Chinese PLA General Hospital, 100853 Beijing, China ,grid.414252.40000 0004 1761 8894Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, 100039 Beijing, China
| | - Xin Jin
- grid.414252.40000 0004 1761 8894Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, 100039 Beijing, China
| | - Zhaodong Wang
- grid.64939.310000 0000 9999 1211School of Mechanical Engineering and Automation, Beihang University, 100191 Beijing, China
| | - Yifan Fang
- grid.414252.40000 0004 1761 8894Graduate School of Chinese PLA General Hospital, 100853 Beijing, China ,grid.414252.40000 0004 1761 8894Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, 100039 Beijing, China
| | - Zhao Li
- grid.414252.40000 0004 1761 8894Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, 100039 Beijing, China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, 300071 Tianjin, China
| | - Zhe Yang
- grid.414252.40000 0004 1761 8894Graduate School of Chinese PLA General Hospital, 100853 Beijing, China ,grid.414252.40000 0004 1761 8894Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, 100039 Beijing, China
| | - Jinju Cong
- Aier Eye Hospital, 433199 Qianjiang City, Hubei Province China
| | - Yang Yang
- grid.64939.310000 0000 9999 1211School of Mechanical Engineering and Automation, Beihang University, 100191 Beijing, China
| | - Yifei Huang
- grid.414252.40000 0004 1761 8894Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, 100039 Beijing, China
| | - Liqiang Wang
- grid.414252.40000 0004 1761 8894Senior Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, 100039 Beijing, China ,grid.414252.40000 0004 1761 8894State Key Laboratory of Kidney Diseases, 100853 Beijing, China
| |
Collapse
|
43
|
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1477-1507. [PMID: 36107200 PMCID: PMC9630211 DOI: 10.1007/s00210-022-02287-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Blindness affects more than 60 million people worldwide. Retinal disorders, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the leading causes of blindness. Finding means to optimize local and sustained delivery of drugs or genes to the eye and retina is one goal to advance the development of new therapeutics. Despite the ease of accessibility of delivering drugs via the ocular surface, the delivery of drugs to the retina is still challenging due to anatomic and physiologic barriers. Designing a suitable delivery platform to overcome these barriers should enhance drug bioavailability and provide a safe, controlled, and sustained release. Current inventions for posterior segment treatments include intravitreal implants and subretinal viral gene delivery that satisfy these criteria. Several other novel drug delivery technologies, including nanoparticles, micelles, dendrimers, microneedles, liposomes, and nanowires, are now being widely studied for posterior segment drug delivery, and extensive research on gene delivery using siRNA, mRNA, or aptamers is also on the rise. This review discusses the current state of retinal drug/gene delivery and highlights future therapeutic opportunities.
Collapse
Affiliation(s)
- Mohamed Tawfik
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Fang Chen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
44
|
Mansouri V. X-Linked Retinitis Pigmentosa Gene Therapy: Preclinical Aspects. Ophthalmol Ther 2022; 12:7-34. [PMID: 36346573 PMCID: PMC9641696 DOI: 10.1007/s40123-022-00602-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
The most common inherited eye disease is retinitis pigmentosa (RP). X-linked RP (XLRP) is one of the most severe types of RP, with a considerable disease burden. Patients with XLRP experience a decrease in their vision and become blind in their 4th decade of life, causing much morbidity after starting a rather normal life. Treatment of XLRP remains challenging, and current treatments are not effective enough in restoring vision. Gene therapy of XLRP, capable of restoring the functional RPGR gene, showed promising results in preclinical studies and clinical trials; however, to date, no approved product has entered the market. The development of a gene therapy product needs through preliminary assessment of the drug in animal models before administration to humans. In this article, we reviewed the genetic pathology of XLRP, along with the preclinical aspects of the XLRP gene therapy, animal models, associated assessments, and future challenges and directions.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Scruggs BA, Vasconcelos HM, Matioli da Palma M, Kogachi K, Pennesi ME, Yang P, Bailey ST, Lauer AK. Injection pressure levels for creating blebs during subretinal gene therapy. Gene Ther 2022; 29:601-607. [PMID: 34580433 PMCID: PMC8958181 DOI: 10.1038/s41434-021-00294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Retinal damage has been associated with increased injection pressure during subretinal gene therapy delivery in various animal models, yet there are no human clinical data regarding the pressures required to initiate and propagate subretinal blebs. This study characterized the intraoperative pressure levels for subretinal gene therapy delivery across eight retinal conditions. A total of 116 patients with retinal degenerative diseases have been treated with subretinal gene therapy at OHSU-Casey Eye Institute as of June 2020; seventy patients (60.3%) were treated using a pneumatic-assisted subretinal delivery system. All retinal blebs were performed using a 41-gauge injection cannula, and use of a balanced salt solution (BSS) "pre-bleb" prior to gene therapy delivery was performed at the discretion of the surgeon. Patient age and intraoperative data for BSS and vector injections were analyzed in a masked fashion for all patients who received pneumatic-assisted subretinal gene therapy. The median age of the patients was 35 years (range 4-70). No significant differences in injection pressures were found across the eight retinal conditions. In this study, patient age was shown to affect maximum injection pressures required for bleb propagation, and the relationship between age and pressure varied based on retinal condition. These data have important implications in optimizing surgical protocols for subretinal injections.
Collapse
Affiliation(s)
- Brittni A Scruggs
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Huber Martins Vasconcelos
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana Matioli da Palma
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - Katie Kogachi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Mark E Pennesi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Steven T Bailey
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Andreas K Lauer
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
46
|
Liu L, Rambarran T, Sheardown H. Phenylboronic acid modified hydrogel materials and their potential for use in contact lens based drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1924-1938. [PMID: 35695022 DOI: 10.1080/09205063.2022.2088531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The use of hydrogel-based contact lens materials holds promise for ophthalmic drug delivery by increasing drug residence time, improving drug bioavailability, reducing administration frequency, and enhancing special site targeting. Issues such as ease of manufacturing, lens comfort and appropriate release kinetics must be considered. Furthermore, the high water content of hydrogel materials can result in rapid and poorly controlled release kinetics. Herein, we modified common hydrogels used in contact lens manufacturing with phenylboronic acid (PBA). PBA addresses these material design issues since boronate esters are easily formed when boron acid and diols interact, opening up a pathway for simple modification of the model lens materials with saccharide based wetting agents. The wetting agents have the potential to improve lens comfort. Furthermore, the hydrophobicity of PBA and the presence of diols can be useful to help control drug release kinetics. In this work, polymerizable 3-(acrylamido)phenylboronic acid (APBA) was synthesized and incorporated into various hydrogels used in contact lens applications, including poly(2-hydroxyethylmethacrylate) (PHEMA), polyvinylpyrrolidone (PVP) and poly(N,N-dimethyl acrylamide) (PDMA) using UV induced free radical polymerization. The APBA structure and its incorporation into the hydrogel materials were confirmed by NMR and FTIR. The materials were shown to interact with and bind wetting agents such as hyaluronan (HA) and hydroxypropyl guar (HPG) by simple soaking in an aqueous solution. The equilibrium water content of the modified materials was characterized, demonstrating that most materials are still in the appropriate range after the introduction of the hydrophobic PBA. The release of three model ophthalmic drugs with varying hydrophilicity, atropine, atropine sulfate and dexamethasone, was examined. The presence of PBA in the materials was found to promote sustained drug release due to its hydrophobic nature. The results suggest that the modification of the materials with PBA was able to not only provide a mucoadhesive property that enhanced wetting agent interactions with the materials, but had the potential to alter drug release. Thus, the modification of contact lens materials with mucoadhesive functionality may be useful in the design of hydrogel contact lenses for ophthalmic drug release and wetting agent binding.
Collapse
Affiliation(s)
- Lina Liu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Talena Rambarran
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
47
|
Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci U S A 2022; 119:e2210104119. [PMID: 36122230 PMCID: PMC9522375 DOI: 10.1073/pnas.2210104119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CRISPR-Cas-based genome editing technologies could, in principle, be used to treat a wide variety of inherited diseases, including genetic disorders of vision. Programmable CRISPR-Cas nucleases are effective tools for gene disruption, but they are poorly suited for precisely correcting pathogenic mutations in most therapeutic settings. Recently developed precision genome editing agents, including base editors and prime editors, have enabled precise gene correction and disease rescue in multiple preclinical models of genetic disorders. Additionally, new delivery technologies that transiently deliver precision genome editing agents in vivo offer minimized off-target editing and improved safety profiles. These improvements to precision genome editing and delivery technologies are expected to revolutionize the treatment of genetic disorders of vision and other diseases. In this Perspective, we describe current preclinical and clinical genome editing approaches for treating inherited retinal degenerative diseases, and we discuss important considerations that should be addressed as these approaches are translated into clinical practice.
Collapse
Affiliation(s)
- Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Elliot H. Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
48
|
Salman A, Kantor A, McClements ME, Marfany G, Trigueros S, MacLaren RE. Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics 2022; 14:1842. [PMID: 36145593 PMCID: PMC9503525 DOI: 10.3390/pharmaceutics14091842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool have revolutionized the field of molecular biology and generated excitement for its potential to treat a wide range of human diseases. As a gene therapy target, the retina offers many advantages over other tissues because of its surgical accessibility and relative immunity privilege due to its blood-retinal barrier. These features explain the large advances made in ocular gene therapy over the past decade, including the first in vivo clinical trial using CRISPR gene-editing reagents. Although viral vector-mediated therapeutic approaches have been successful, they have several shortcomings, including packaging constraints, pre-existing anti-capsid immunity and vector-induced immunogenicity, therapeutic potency and persistence, and potential genotoxicity. The use of nanomaterials in the delivery of therapeutic agents has revolutionized the way genetic materials are delivered to cells, tissues, and organs, and presents an appealing alternative to bypass the limitations of viral delivery systems. In this review, we explore the potential use of non-viral vectors as tools for gene therapy, exploring the latest advancements in nanotechnology in medicine and focusing on the nanoparticle-mediated delivery of CRIPSR genetic cargo to the retina.
Collapse
Affiliation(s)
- Ahmed Salman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ariel Kantor
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Gemma Marfany
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- CIBERER, University of Barcelona, 08007 Barcelona, Spain
| | - Sonia Trigueros
- Department of Genetics Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
49
|
Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, Rodríguez-Hidalgo M, Lara-López A, Ruiz-Ederra J. Subretinal Injection Techniques for Retinal Disease: A Review. J Clin Med 2022; 11:jcm11164717. [PMID: 36012955 PMCID: PMC9409835 DOI: 10.3390/jcm11164717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) affect an estimated 1 in every 2000 people, this corresponding to nearly 2 million cases worldwide. Currently, 270 genes have been associated with IRDs, most of them altering the function of photoreceptors and retinal pigment epithelium. Gene therapy has been proposed as a potential tool for improving visual function in these patients. Clinical trials in animal models and humans have been successful in various types of IRDs. Recently, voretigene neparvovec (Luxturna®) has been approved by the US Food and Drug Administration for the treatment of biallelic mutations in the RPE65 gene. The current state of the art in gene therapy involves the delivery of various types of viral vectors into the subretinal space to effectively transduce diseased photoreceptors and retinal pigment epithelium. For this, subretinal injection is becoming increasingly popular among researchers and clinicians. To date, several approaches for subretinal injection have been described in the scientific literature, all of them effective in accessing the subretinal space. The growth and development of gene therapy give rise to the need for a standardized procedure for subretinal injection that ensures the efficacy and safety of this new approach to drug delivery. The goal of this review is to offer an insight into the current subretinal injection techniques and understand the key factors in the success of this procedure.
Collapse
Affiliation(s)
- Cristina Irigoyen
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
- Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Department of Ophthalmology, University of the Basque Country, 48940 Leioa, Spain
| | - Asier Amenabar Alonso
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
| | - Jorge Sanchez-Molina
- Department of Ophthalmology, Donostia University Hospital (HUD), 20014 Donostia San-Sebastián, Spain
- Correspondence: ; Tel.: +34-629950276
| | | | | | | |
Collapse
|
50
|
Li Z, Fu P, Wei BT, Wang J, Li AL, Li MJ, Bian GB. An automatic drug injection device with spatial micro-force perception guided by an microscopic image for robot-assisted ophthalmic surgery. Front Robot AI 2022; 9:913930. [PMID: 35991847 PMCID: PMC9382114 DOI: 10.3389/frobt.2022.913930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Retinal vein injection guided by microscopic image is an innovative procedure for treating retinal vein occlusion. However, the retina organization is complex, fine, and weak, and the operation scale and force are small. Surgeons’ limited operation and force-sensing accuracy make it difficult to perform precise and stable drug injection operations on the retina in a magnified field of image vision. In this paper, a 3-DOF automatic drug injection mechanism was designed for microscopic image guiding robot-assisted needle delivery and automatic drug injection. Additionally, the robot-assisted real-time three-dimensional micro-force-sensing method for retinal vein injection was proposed. Based on the layout of three FBG sensors on the hollow outer wall of the nested needle tube in a circular array of nickel-titanium alloys, the real-time sensing of the contact force between the intraoperative instrument and the blood vessel was realized. The experimental data of 15 groups of porcine eyeball retinal veins with diameters of 100–200 μm showed that the piercing force of surgical instruments and blood vessels is 5.95∼12.97 mN, with an average value of 9.98 mN. Furthermore, 20 groups of experimental measurements on chicken embryo blood vessels with diameters of 150–500 μm showed that the piercing force was 4.02∼23.4 mN, with an average value of 12.05 mN.
Collapse
Affiliation(s)
- Zhen Li
- School of Electronic and Information Engineering, Tongji University, Shanghai, China
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Pan Fu
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Automation, Beijing Information Science and Technology University, Beijing, China
| | - Bing-Ting Wei
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Automation, Beijing Information Science and Technology University, Beijing, China
| | - An-Long Li
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ming-Jun Li
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Automation, Beijing Information Science and Technology University, Beijing, China
| | - Gui-Bin Bian
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Gui-Bin Bian,
| |
Collapse
|