1
|
Ronchese F, Webb GR, Ochiai S, Lamiable O, Brewerton M. How type-2 dendritic cells induce Th2 differentiation: Instruction, repression, or fostering T cell-T cell communication? Allergy 2024. [PMID: 39324367 DOI: 10.1111/all.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Allergic disease is caused by the activation of allergen-specific CD4+ type-2 T follicular helper cells (Tfh2) and T helper 2 (Th2) effector cells that secrete the cytokines IL-4, IL-5, IL-9, and IL-13 upon allergen encounter, thereby inducing IgE production by B cells and tissue inflammation. While it is accepted that the priming and differentiation of naïve CD4+ T cells into Th2 requires allergen presentation by type 2 dendritic cells (DC2s), the underlying signals remain unidentified. In this review we focus on the interaction between allergen-presenting DC2s and naïve CD4+ T cells in lymph node (LN), and the potential mechanisms by which DC2s might instruct Th2 differentiation. We outline recent advances in characterizing DC2 development and heterogeneity. We review mechanisms of allergen sensing and current proposed mechanisms of Th2 differentiation, with specific consideration of the role of DC2s and how they might contribute to each mechanism. Finally, we assess recent publications reporting a detailed analysis of DC-T cell interactions in LNs and how they support Th2 differentiation. Together, these studies are starting to shape our understanding of this key initial step of the allergic immune response.
Collapse
Affiliation(s)
- Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Greta R Webb
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sotaro Ochiai
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Maia Brewerton
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Clinical Immunology and Allergy, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
2
|
Yang Y, He X, Li F, He S, Liu M, Li M, Xia F, Su W, Liu G. Animal-derived food allergen: A review on the available crystal structure and new insights into structural epitope. Compr Rev Food Sci Food Saf 2024; 23:e13340. [PMID: 38778570 DOI: 10.1111/1541-4337.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.
Collapse
Affiliation(s)
- Yang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Xinrong He
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Fajie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Shaogui He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian, China
| | - Mengsi Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian, China
| | - Fei Xia
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Wenjin Su
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Min J, Keswani T, LaHood NA, Lytle IR, Marini-Rapoport O, Andrieux L, Sneed SL, Edwards LL, Petrovich RM, Perera L, Pomés A, Pedersen LC, Patil SU, Mueller GA. Design of an Ara h 2 hypoallergen from conformational epitopes. Clin Exp Allergy 2024; 54:46-55. [PMID: 38168500 PMCID: PMC10843581 DOI: 10.1111/cea.14433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Adverse reactions are relatively common during peanut oral immunotherapy. To reduce the risk to the patient, some researchers have proposed modifying the allergen to reduce IgE reactivity, creating a putative hypoallergen. Analysis of recently cloned human IgG from patients treated with peanut immunotherapy suggested that there are three common conformational epitopes for the major peanut allergen Ara h 2. We sought to test if structural information on these epitopes could indicate mutagenesis targets for designing a hypoallergen and evaluated the reduction in IgE binding via immunochemistry and a mouse model of passive cutaneous anaphylaxis (PCA). METHODS X-ray crystallography characterized the conformational epitopes in detail, followed by mutational analysis of key residues to modify monoclonal antibody (mAb) and serum IgE binding, assessed by ELISA and biolayer interferometry. A designed Ara h 2 hypoallergen was tested for reduced vascularization in mouse PCA experiments using pooled peanut allergic patient serum. RESULTS A ternary crystal structure of Ara h 2 in complex with patient antibodies 13T1 and 13T5 was determined. Site-specific mutants were designed that reduced 13T1, 13T5, and 22S1 mAbs binding by orders of magnitude. By combining designed mutations from the three major conformational bins, a hexamutant (Ara h 2 E46R, E89R, E97R, E114R, Q146A, R147E) was created that reduced IgE binding in serum from allergic patients. Further, in the PCA model where mice were primed with peanut allergic patient serum, reactivity upon allergen challenge was significantly decreased using the hexamutant. CONCLUSION These studies demonstrate that prior knowledge of common conformational epitopes can be used to engineer reduced IgE reactivity, an important first step in hypoallergen design.
Collapse
Affiliation(s)
- Jungki Min
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Tarun Keswani
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole A. LaHood
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Isabelle R. Lytle
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Orlee Marini-Rapoport
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Léna Andrieux
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Lyon Cedex 07, France
| | - Sunny L. Sneed
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Lori L. Edwards
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Robert M. Petrovich
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | | | - Lars C. Pedersen
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Sarita U. Patil
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey A. Mueller
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| |
Collapse
|
4
|
Zhang Y, Hu W, Chen D, Ding M, Wang T, Wang Y, Chi J, Li Z, Li Q, Li C. An allergenic plant calmodulin from Artemisia pollen primes human DCs leads to Th2 polarization. Front Immunol 2022; 13:996427. [PMID: 36248805 PMCID: PMC9556433 DOI: 10.3389/fimmu.2022.996427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Artemisia pollen is the major cause of seasonal allergic respiratory diseases in the northern hemisphere. About 28.57% of Artemisia allergic patients’ IgE can recognize ArtCaM, a novel allergenic calmodulin from Artemisia identified in this study. These patients exhibited stronger allergic reactions and a longer duration of allergic symptoms. However, the signaling mechanism that triggers these allergic reactions is not fully understood. In this study, we found that extracellular ArtCaM directly induces the maturation of human dendritic cells (DCs), which is attributed to a series of Ca2+ relevant cascades, including Ca2+/NFAT/CaMKs. ArtCaM alone induces inflammatory response toward Th1, Th17, and Treg. Interestingly, a combination of ArtCaM and anti-ArtCaM IgE led to Th2 polarization. The putative mechanism is that anti-ArtCaM IgE partially blocks the ArtCaM-induced ERK signal, but does not affect Ca2+-dependent cascades. The crosstalk between ERK and Ca2+ signal primes DCs maturation and Th2 polarization. In summary, ArtCaM related to clinical symptoms when combined with anti-ArtCaM IgE, could be a novel allergen to activate DCs and promote Th2 polarization. Such findings provide mechanistic insights into Th2 polarization in allergic sensitization and pave the way for novel preventive and therapeutic strategies for efficient management of such pollen allergic disease.
Collapse
Affiliation(s)
- Yue Zhang
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenzhi Hu
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Dongbo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, China
| | - Ming Ding
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Tao Wang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Yaojun Wang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Jiaoni Chi
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Zhimin Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
- *Correspondence: Chengxin Li, ; Qiang Li,
| | - Chengxin Li
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Chengxin Li, ; Qiang Li,
| |
Collapse
|
5
|
Yang YS, Xu ZQ, Zhu W, Zhu DX, Jiao YX, Zhang LS, Hou YB, Wei JF, Sun JL. Molecular and immunochemical characterization of profilin as major allergen from Platanus acerifolia pollen. Int Immunopharmacol 2022; 106:108601. [DOI: 10.1016/j.intimp.2022.108601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 01/03/2023]
|
6
|
Agache I, Palmer E, Sanver D, Kirtland M, Shamji MH. Molecular allergology approach to allergic asthma. Mol Aspects Med 2021; 85:101027. [PMID: 34579961 DOI: 10.1016/j.mam.2021.101027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Allergic asthma is a frequently encountered and well described asthma phenotype. However, its precise mechanisms are less known. The tools for targeted selection of patients for an optimal response to intervention (prevention or treatment) are also lacking. Here we explore the potential of the molecular allergology approach to achieve a better understanding of allergic asthma mechanisms, a precise diagnosis and an optimal management of these patients.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | - Elizabeth Palmer
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Didem Sanver
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK; Necmettin Erbakan University, Engineering & Architecture Faculty, Department of Food Engineering, Konya, Turkey
| | - Max Kirtland
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Mohamed H Shamji
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| |
Collapse
|
7
|
Benedé S, Lozano-Ojalvo D, Cristobal S, Costa J, D'Auria E, Velickovic TC, Garrido-Arandia M, Karakaya S, Mafra I, Mazzucchelli G, Picariello G, Romero-Sahagun A, Villa C, Roncada P, Molina E. New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Crit Rev Food Sci Nutr 2021; 62:8686-8702. [PMID: 34060381 DOI: 10.1080/10408398.2021.1931806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, New York, NY, USA
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.,IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Enza D'Auria
- Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università degli Studi, Milano, Italy
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy
| | - Alejandro Romero-Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
8
|
Gómez-Esquivel ML, Guidos-Fogelbach GA, Rojo-Gutiérrez MI, Mellado-Abrego J, Bermejo-Guevara MA, Castillo-Narváez G, Velázquez-Sámano G, Velasco-Medina AA, Moya-Almonte MG, Vallejos-Pereira CM, López-Hidalgo M, Godínez-Victoria M, Reyes-López CA. Identification of an allergenic calmodulin from Amaranthus palmeri pollen. Mol Immunol 2021; 132:150-156. [PMID: 33592570 DOI: 10.1016/j.molimm.2021.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/05/2021] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Pollens are an important source of allergens that trigger rhinitis or asthma. The allergenic extracts of pollens used to diagnose and treat allergies contain different allergenic antigens. Isolated allergenic proteins are employed in in vitro assays, skin tests and allergenic-specific immunotherapy. Calcium-binding allergens are clinically relevant antigens, and their allergenicity can be affected by Ca2+ binding. In this work, a calmodulin was identified as an allergen from Amaranthus palmeri pollen, an important source of pollinosis in Europe, Asia and North America. MATERIALS AND METHODS Allergenic calmodulin from A. palmeri pollen was isolated by size-exclusion chromatography and reverse-phase chromatography and identified by mass spectrometry. Sensitization to isolated calmodulin was evaluated by skin prick tests in patients with allergy to A. palmeri pollen. RESULTS Size-exclusion chromatography yielded two fractions that were recognized by the IgE of patients allergic to A. palmeri pollen. Mass spectrometry analysis of the fractions from reverse-phase chromatography showed peptide sequences that identified a calmodulin. Skin prick tests showed that the isolated calmodulin was recognized by 56% of patients allergic to A. palmeri pollen. CONCLUSION A. palmeri pollen calmodulin could be a clinically relevant allergen in patients sensitized to this source.
Collapse
Affiliation(s)
- Mónica Luz Gómez-Esquivel
- Sección De Estudios De Posgrado e Investigación, ESM, Instituto Politécnico Nacional, Plan De San Luis y Díaz Mirón s/n, Col. Casco De Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Ciudad De México, Mexico; Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, Col. Frac. "La Escalera", Ticomán, Gustavo A. Madero, C.P. 07320, Ciudad De México, Mexico
| | - Guillermo Arturo Guidos-Fogelbach
- Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, Col. Frac. "La Escalera", Ticomán, Gustavo A. Madero, C.P. 07320, Ciudad De México, Mexico
| | - María Isabel Rojo-Gutiérrez
- Servicio de Alergia e Inmunología, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena De Las Salinas, Gustavo A. Madero, C.P. 07760, Ciudad De México, Mexico
| | - Jaime Mellado-Abrego
- Servicio de Alergia e Inmunología, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena De Las Salinas, Gustavo A. Madero, C.P. 07760, Ciudad De México, Mexico
| | - Mario Alberto Bermejo-Guevara
- Servicio de Alergia e Inmunología, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena De Las Salinas, Gustavo A. Madero, C.P. 07760, Ciudad De México, Mexico
| | - Gloria Castillo-Narváez
- Servicio de Alergia e Inmunología, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena De Las Salinas, Gustavo A. Madero, C.P. 07760, Ciudad De México, Mexico
| | - Guillermo Velázquez-Sámano
- Servicio De Alergia e Inmunología Clínica, Hospital General De México, Dr. Balmis No.148 Col. Doctores, Cuauhtémoc, C.P. 06720, Ciudad De México, Mexico
| | - Andrea Aida Velasco-Medina
- Servicio De Alergia e Inmunología Clínica, Hospital General De México, Dr. Balmis No.148 Col. Doctores, Cuauhtémoc, C.P. 06720, Ciudad De México, Mexico
| | - Margaret Gissett Moya-Almonte
- Servicio De Alergia e Inmunología Clínica, Hospital General De México, Dr. Balmis No.148 Col. Doctores, Cuauhtémoc, C.P. 06720, Ciudad De México, Mexico
| | - Carla Marcela Vallejos-Pereira
- Servicio De Alergia e Inmunología Clínica, Hospital General De México, Dr. Balmis No.148 Col. Doctores, Cuauhtémoc, C.P. 06720, Ciudad De México, Mexico
| | - Marisol López-Hidalgo
- Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, Col. Frac. "La Escalera", Ticomán, Gustavo A. Madero, C.P. 07320, Ciudad De México, Mexico
| | - Marycarmen Godínez-Victoria
- Sección De Estudios De Posgrado e Investigación, ESM, Instituto Politécnico Nacional, Plan De San Luis y Díaz Mirón s/n, Col. Casco De Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Ciudad De México, Mexico
| | - César A Reyes-López
- Sección de Estudios de Posgrado e Investigación, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, Col. Frac. "La Escalera", Ticomán, Gustavo A. Madero, C.P. 07320, Ciudad De México, Mexico.
| |
Collapse
|
9
|
Jacquet A. Perspectives in Allergen-Specific Immunotherapy: Molecular Evolution of Peptide- and Protein-Based Strategies. Curr Protein Pept Sci 2020; 21:203-223. [PMID: 31416410 DOI: 10.2174/1389203720666190718152534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Allergen-specific Immunotherapy (AIT), through repetitive subcutaneous or sublingual administrations of allergen extracts, represents up to now the unique treatment against allergic sensitizations. However, the clinical efficacy of AIT can be largely dependent on the quality of natural allergen extracts. Moreover, the long duration and adverse side effects associated with AIT negatively impact patient adherence. Tremendous progress in the field of molecular allergology has made possible the design of safer, shorter and more effective new immunotherapeutic approaches based on purified and characterized natural or recombinant allergen derivatives and peptides. This review will summarize the characteristics of these different innovative vaccines including their effects in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Mueller GA, Glesner J, Daniel JL, Zhang J, Hyduke N, Richardson CM, DeRose EF, Chapman MD, Peebles RS, A Smith S, Pomés A. Mapping Human Monoclonal IgE Epitopes on the Major Dust Mite Allergen Der p 2. THE JOURNAL OF IMMUNOLOGY 2020; 205:1999-2007. [PMID: 32907999 DOI: 10.4049/jimmunol.2000295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023]
Abstract
IgE Abs drive the symptoms of allergic disease upon cross-linking allergens on mast cells or basophils. If the IgE binding sites on the allergens could be identified, it may be useful for creating new forms of immunotherapy. However, direct knowledge of the human IgE (hIgE) epitopes is limited because of the very low frequency of IgE-producing B cells in blood. A new hybridoma technology using human B cells from house dust mite-allergic patients was used to identify four Der p 2-specific hIgE mAbs. Their relative binding sites were assessed and compared by immunoassays with three previously studied murine IgG mAbs. Immunoassays showed that the recognition of Der p 2 by the first three hIgE was inhibited by a single murine IgG, but the fourth hIgE recognized a different epitope from all the other mAbs. The functional ability of the hIgE that bind different epitopes to cross-link Der p 2 was demonstrated in a mouse model of passive systemic anaphylaxis. Nuclear magnetic resonance analyses of Der p 2 in complex with IgG and IgE Abs were used to identify specific residues in the epitopes. To our knowledge, the combination of immunoassays to distinguish overlapping epitopes and nuclear magnetic resonance analyses to identify specific residues involved in Ab binding provided the first epitope mapping of hIgE mAbs to an allergen. The technologies developed in this study will be useful in high-resolution mapping of human epitopes on other Ags and the design of improved therapeutics.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709;
| | - Jill Glesner
- Basic Research, Indoor Biotechnologies, Inc., Charlottesville, VA 22903
| | - Jacob L Daniel
- Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Jian Zhang
- Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Noah Hyduke
- University of South Carolina, Columbia, SC 22908
| | | | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Martin D Chapman
- Basic Research, Indoor Biotechnologies, Inc., Charlottesville, VA 22903
| | | | - Scott A Smith
- Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Anna Pomés
- Basic Research, Indoor Biotechnologies, Inc., Charlottesville, VA 22903
| |
Collapse
|
11
|
Pomés A, Mueller GA, Chruszcz M. Structural Aspects of the Allergen-Antibody Interaction. Front Immunol 2020; 11:2067. [PMID: 32983155 PMCID: PMC7492603 DOI: 10.3389/fimmu.2020.02067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
The development of allergic disease involves the production of IgE antibodies upon allergen exposure in a process called sensitization. IgE binds to receptors on the surface of mast cells and basophils, and subsequent allergen exposure leads to cross-linking of IgE antibodies and release of cell mediators that cause allergy symptoms. Although this process is quite well-understood, very little is known about the epitopes on the allergen recognized by IgE, despite the importance of the allergen-antibody interaction for the allergic response to occur. This review discusses efforts to analyze allergen-antibody interactions, from the original epitope mapping studies using linear peptides or recombinant allergen fragments, to more sophisticated technologies, such as X-ray crystallography and nuclear magnetic resonance. These state-of-the-art approaches, combined with site-directed mutagenesis, have led to the identification of conformational IgE epitopes. The first structures of an allergen (egg lysozyme) in complex with Fab fragments from IgG antibodies were determined in the 1980s. Since then, IgG has been used as surrogate for IgE, due to the difficulty of obtaining monoclonal IgE antibodies. Technical developments including phage display libraries have contributed to progress in epitope mapping thanks to the isolation of IgE antibody constructs from combinatorial libraries made from peripheral blood mononuclear cells of allergic donors. Most recently, single B cell antibody sequencing and human hybridomas are new breakthrough technologies for finally obtaining human IgE monoclonal antibodies, ideal for epitope mapping. The information on antigenic determinants will facilitate the design of hypoallergens for immunotherapy and the investigation of the fundamental mechanisms of the IgE response.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Aim of this review is the description of the medical conditions in which the support of molecular allergy diagnostics (MAD) has an impact on the clinical outcomes, such as laboratory diagnostics, prognosis, and therapy of allergic diseases. RECENT FINDINGS The review of the literature of the last 2 years generated a wide number of results on this topic. As expected, not all were obtained by the use of MAD, but, in general, a clear trend is evident. SUMMARY Within the large number of works available, laboratory allergy diagnostics seems to be the most frequently discussed topic, in particular considering the complexity of the biological environment where these assays are used. Some interesting news arrive from the prognostic potential of MAD, whereas for allergen immunotherapy, waiting for a well-conducted prospective randomized clinical study, data from retrospective studies still confirms the added values of MAD in the management of the allergic patients.
Collapse
|
13
|
Fernández-Quintero ML, Loeffler JR, Waibl F, Kamenik AS, Hofer F, Liedl KR. Conformational selection of allergen-antibody complexes-surface plasticity of paratopes and epitopes. Protein Eng Des Sel 2019; 32:513-523. [PMID: 32719844 PMCID: PMC7451023 DOI: 10.1093/protein/gzaa014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Antibodies have the ability to bind various types of antigens and to recognize different antibody-binding sites (epitopes) of the same antigen with different binding affinities. Due to the conserved structural framework of antibodies, their specificity to antigens is mainly determined by their antigen-binding site (paratope). Therefore, characterization of epitopes in combination with describing the involved conformational changes of the paratope upon binding is crucial in understanding and predicting antibody-antigen binding. Using molecular dynamics simulations complemented with strong experimental structural information, we investigated the underlying binding mechanism and the resulting local and global surface plasticity in the binding interfaces of distinct antibody-antigen complexes. In all studied allergen-antibody complexes, we clearly observe that experimentally suggested epitopes reveal less plasticity, while non-epitope regions show high surface plasticity. Surprisingly, the paratope shows higher conformational diversity reflected in substantially higher surface plasticity, compared to the epitope. This work allows a visualization and characterization of antibody-antigen interfaces and might have strong implications for antibody-antigen docking and in the area of epitope prediction.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Johannes R Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
14
|
Evaluation of a new multiplex assay for allergy diagnosis. Clin Chim Acta 2019; 493:73-78. [DOI: 10.1016/j.cca.2019.02.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 01/07/2023]
|
15
|
Mueller GA, Min J, Foo ACY, Pomés A, Pedersen LC. Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions. Curr Allergy Asthma Rep 2019; 19:17. [PMID: 30815753 DOI: 10.1007/s11882-019-0848-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Allergen-antibody complexes are extremely valuable in describing the detailed molecular features of epitopes. This review summarizes insights gained from recently published co-structures and what obstacles impede the acquisition of further data. RECENT FINDINGS Structural epitope data helped define the epitopes of two anti-Fel d 1 antibodies undergoing phase I clinical trials, providing a greater level of detail than was possible through hydrogen-deuterium exchange protection studies. Separately, a human camelid-like antibody structure with lysozyme described several unique features in a long variable loop that interacted with the active site cleft of Gal d 4. Finally, a co-structure conclusively demonstrated that Phl p 7 could function as a superantigen and that an antibody could simultaneously recognize two epitopes. These remarkable assertions would not have been possible without visualization of the complex. Only three new complexes have appeared in the last few years, suggesting that there are major impediments to traditional production and crystallization. The structural data was extremely valuable in describing epitopes. New techniques like cryo-EM may provide an alternative to crystallography.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive MD-MR-01, Research Triangle Park, NC, 27709, USA.
| | - Jungki Min
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive MD-MR-01, Research Triangle Park, NC, 27709, USA
| | - Alexander C Y Foo
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive MD-MR-01, Research Triangle Park, NC, 27709, USA
| | - Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, USA
| | - Lars C Pedersen
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive MD-MR-01, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
16
|
Heffler E, Puggioni F, Descalzi D, Racca F, Canonica GW, Melioli G. Microarray Immunodiagnostics for Aeroallergens. Curr Allergy Asthma Rep 2019; 19:10. [PMID: 30771109 DOI: 10.1007/s11882-019-0832-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The impact of new technologies, especially multiplexed molecular allergy diagnostics based on allergen arrays, on the management of complex patients with respiratory allergies has been important. RECENT FINDINGS Currently, the detailed characteristics of the IgE profile of the patient, such as sensitization to genuine or cross-reacting components or the sensitization to potentially harmful allergens, allow an allergist to tailor treatment in the context of precision medicine rules. A number of relevant articles have been published in recent years on this topic, and, in this review, the new added values of allergen array-based diagnostics are reported.
Collapse
Affiliation(s)
- Enrico Heffler
- Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital, Rozzano, MI, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital, Rozzano, MI, Italy
| | - Desideria Descalzi
- Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital, Rozzano, MI, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Francesca Racca
- Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital, Rozzano, MI, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital, Rozzano, MI, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Giovanni Melioli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy.
| |
Collapse
|
17
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|