1
|
Nazari-Serenjeh M, Baluchnejadmojarad T, Hatami-Morassa M, Fahanik-Babaei J, Mehrabi S, Tashakori-Miyanroudi M, Ramazi S, Mohamadi-Zarch SM, Nourabadi D, Roghani M. Kolaviron neuroprotective effect against okadaic acid-provoked cognitive impairment. Heliyon 2024; 10:e25564. [PMID: 38356522 PMCID: PMC10864987 DOI: 10.1016/j.heliyon.2024.e25564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is acknowledged as the main causative factor of dementia that affects millions of people around the world and is increasing at increasing pace. Okadaic acid (OA) is a toxic compound with ability to inhibit protein phosphatases and to induce tau protein hyperphosphorylation and Alzheimer's-like phenotype. Kolaviron (KV) is a bioflavonoid derived from Garcinia kola seeds with anti-antioxidative and anti-inflammation properties. The main goal of this study was to assess whether kolaviron can exert neuroprotective effect against okadaic acid-induced cognitive deficit. Rats had an intracerebroventricular (ICV) injection of OA and pretreated with KV at 50 or 100 mg/kg and examined for cognition besides histological and biochemical factors. OA group treated with KV at 100 mg/kg had less memory deficit in passive avoidance and novel object discrimination (NOD) tasks besides lower hippocampal levels of caspases 1 and 3, tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) as inflammatory factors, reactive oxygen species (ROS), protein carbonyl, malondialdehyde (MDA), and phosphorylated tau (p-tau) and higher level of acetylcholinesterase (AChE) activity, mitochondrial integrity index, superoxide dismutase (SOD), and glutathione (GSH). Moreover, KV pretreatment at 100 mg/kg attenuated hippocampal CA1 neuronal loss and glial fibrillary acidic protein (GFAP) reactivity as a factor of astrogliosis. In summary, KV was able to attenuate cognitive fall subsequent to ICV OA which is partly mediated through its neuroprotective potential linked to mitigation of tau hyperphosphorylation, apoptosis, pyroptosis, neuroinflammation, and oxidative stress and also improvement of mitochondrial health.
Collapse
Affiliation(s)
- Morteza Nazari-Serenjeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Hatami-Morassa
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Tashakori-Miyanroudi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Ramazi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mahdi Mohamadi-Zarch
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Nourabadi
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Tetrapleura tetraptera curtails oxidative and proinflammatory biochemical events in lithium-pilocarpine model of status epilepticus. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
5
|
Dong LD, Ma YM, Xu J, Guo YZ, Yang L, Guo FY, Wang MX, Jing L, Zhang JZ. Effect of hyperglycemia on microglial polarization after cerebral ischemia-reperfusion injury in rats. Life Sci 2021; 279:119660. [PMID: 34052292 DOI: 10.1016/j.lfs.2021.119660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023]
Abstract
Hyperglycemia has been shown to aggravate ischemic brain damage, in which the inflammatory reaction induced by hyperglycemia is involved in the worsening of cerebral ischemia-reperfusion injury. However, the role of microglial polarization in hyperglycemia-aggravating cerebral ischemia-reperfusion injury remains unknown. The present study investigated whether diabetic hyperglycemia inhibited or activated microglia, as well as microglial subtypes 1 and 2. Rats were used to establish the diabetic hyperglycemia and middle cerebral artery occlusion (MCAO) model. The markers CD11b, CD16, CD32, CD86, CD206, and Arg1 were used to show M1 or M2 microglia. The results revealed increased neurological deficits, infarct volume, and neural apoptosis in rats with hyperglycemia subjected to MCAO for 30 min and reperfused at 1, 3, and 7 days compared with the normoglycemic rats. Microglia and astrocyte activation and proliferation were inhibited in hyperglycemic rats. Furthermore, M1 microglia polarization was promoted, while that of M2 microglia was inhibited in hyperglycemic rats. These findings suggested that the polarization of M1 and M2 microglia is activated and inhibited, respectively, in hyperglycemic rats and may be involved in the aggravated brain damage caused by ischemia-reperfusion in diabetic hyperglycemia.
Collapse
Affiliation(s)
- Ling-di Dong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China; Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yan-Mei Ma
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Jie Xu
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Yong-Zhen Guo
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Lan Yang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Feng-Ying Guo
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China
| | - Min-Xing Wang
- School of Clinical Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Li Jing
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China.
| | - Jian-Zhong Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
6
|
Akinmoladun AC, Adelabu AA, Saliu IO, Adetuyi AR, Olaleye MT. Protective properties of Spondias mombin Linn leaves on redox status, cholinergic dysfunction and electrolyte disturbance in cyanide-intoxicated rats. Sci Prog 2021; 104:368504211011866. [PMID: 33913392 PMCID: PMC10454855 DOI: 10.1177/00368504211011866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyanide is an environmental neurotoxin which has been reported to arrest the normal functioning of the brain. This study investigated the protective properties of methanol and flavonoid-rich extracts of the leaves of Spondias mombin on redox status, cholinergic dysfunction and electrolyte disturbance in cyanide-induced neurotoxicity in rats. Male Wistar rats were orally pre-treated with Spondias mombin methanol leaf extract (SMC) (50, 100 and 150 mg/kg), flavonoid-rich extract (SMF) (25, 50 and 75 mg/kg) or quercetin (20 mg/kg), followed by intraperitoneal administration of 2 mg/kg potassium cyanide. Cyanide intoxication caused brain damage in rats as echoed in the deleterious alterations to activities/levels of endogenous antioxidants and biomarkers/enzymes linked with electrolyte imbalance and neurotoxicity. Pre-treatment with SMC and SMF significantly attenuated these KCN-induced imbalances (p < 0.05). The results suggested that the protection conferred by SMC and SMF probably involves attenuation of oxidative stress and regulation of ionic homeostasis. SMF displayed a better apparent ameliorative activity than SMC and 75 mg/kg SMF offered the best protection suggesting that flavonoids probably contributed to the protective effect of Spondias mombin leaf.
Collapse
Affiliation(s)
- Afolabi Clement Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| | - Adesola Adebusayo Adelabu
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| | - Ibrahim Olabayode Saliu
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| | - Aanuoluwapo Ruth Adetuyi
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| | - Mary Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
7
|
Saliu IO, Bhagat R, Ojo OB, Akinmoladun AC, Olaleye MT, Seth P, Rema V. Reduction of anoxia-induced bioenergetic disturbance in astrocytes by methanol fruit extract of Tetrapleura tetraptera and in silico evaluation of the effect of its antioxidative constituents on excitotoxicity. Toxicol Rep 2021; 8:264-276. [PMID: 33552925 PMCID: PMC7848610 DOI: 10.1016/j.toxrep.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/06/2022] Open
Abstract
Oxidative stress and excitotoxicity are some of the pathophysiological abnormalities in hypoxia-induced brain injury. This study evaluated the intrinsic antioxidant property of methanol fruit extract of Tetrapleura tetraptera (TT), traditionally used for managing brain diseases such as cerebral infarction in West Africa, and its ability to protect primary astrocytes from anoxia-induced cell death. The effect of the phytochemicals present in TT on excitotoxicity was assessed in silico, through docking with human glutamate synthetase (hGS). Chromatographic and spectrophotometric analyses of TT were performed. Primary astrocytes derived from neural stem cells were treated with TT and its effect on astrocyte viability was assessed. TT-treated astrocytes were then subjected to anoxic insult and, cell viability and mitochondrial membrane potential were evaluated. Molecular docking of hGS with detected phytochemicals in TT (aridanin, naringenin, ferulic acid, and scopoletin) was performed and the number of interactions with the lead compounds, aridanin, analyzed. HPLC-DAD analysis of TT revealed the presence of various bioactive phytochemicals. TT demonstrated notable antioxidant and radical scavenging activities. TT also protected astrocytes from anoxic insult by restoring cell viability and preventing alteration to mitochondrial membrane integrity. Aridanin, naringenin, ferulic acid, and scopoletin demonstrated good binding affinities with hGS indicating that Tetrapleura tetraptera is a potential source of new plant-based bioactives relevant in the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ibrahim Olabayode Saliu
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria.,Department of System and Cognitive Neuroscience, National Brain Research Center (NBRC), Manesar, Haryana, 122052, India
| | - Reshma Bhagat
- Neurovirology Section, Department of Molecular and Cellular Neuroscience, National Brain Research Centre (NBRC), Manesar, Haryana, 122052, India
| | - Olubukola Benedicta Ojo
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - Afolabi C Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - M Tolulope Olaleye
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - Pankaj Seth
- Neurovirology Section, Department of Molecular and Cellular Neuroscience, National Brain Research Centre (NBRC), Manesar, Haryana, 122052, India
| | - Velayudhan Rema
- Department of System and Cognitive Neuroscience, National Brain Research Center (NBRC), Manesar, Haryana, 122052, India
| |
Collapse
|
8
|
Saliu IO, Amoo ZA, Khan MF, Olaleye MT, Rema V, Akinmoladun AC. Abatement of neurobehavioral and neurochemical dysfunctions in cerebral ischemia/reperfusion injury by Tetrapleura tetraptera fruit extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113284. [PMID: 32841692 DOI: 10.1016/j.jep.2020.113284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrapleura tetraptera Taub. (family Fabaceae), is generally found in the lowland forest of tropical Africa. Its leaves and fruits are traditionally used in West Africa for the management of brain disorders. AIM OF THE STUDY This study evaluated the effect of Tetrapleura tetraptera methanol fruit extract (TT) on bilateral common carotid artery occlusion-induced cerebral ischemia/reperfusion (I/R) injury in male Wistar rats. MATERIALS AND METHODS Rats pretreated with TT for 7 days before a 30 min bilateral common carotid artery occlusion and reperfusion for 24 h were assessed for neurobehavioural deficits. Cortical, striatal and hippocampal oxidative stress, pro-inflammatory events, electrolyte imbalance and neurochemical dysfunctions, as well as hippocampal histopathological alterations, were also evaluated. HPLC-DAD analysis was performed to identify likely compounds contributing to the bioactivity of the extract. RESULTS TT reduced I/R-induced behavioral deficits and ameliorated I/R-induced oxidative stress by restoring reduced glutathione level, increasing catalase and superoxide dismutase activities, and also reducing both lipid peroxidation and xanthine oxidase activity in the brain. TT attenuated I/R-increased myeloperoxidase and lactate dehydrogenase activities as well as disturbances in Na+ and K+ levels. Alterations elicited by I/R in the activities of Na+/K+ ATPase, complex I, glutamine synthetase, acetylcholinesterase, and dopamine metabolism were abated by TT pretreatment. TT prevented I/R-induced histological changes in the hippocampus. HPLC-DAD analysis revealed the presence of aridanin, a marker compound for Tetrapleura tetraptera, and other phytochemicals. CONCLUSIONS These findings indicate that Tetrapleura tetraptera fruit has a protective potential against stroke through modulation of redox and electrolyte imbalances, and attenuation of neurotransmitter dysregulation and other neurochemical dysfunctions. Tetrapleura tetraptera fruit could be a promising source for the discovery of bioactives for stroke therapy.
Collapse
Affiliation(s)
- Ibrahim Olabayode Saliu
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria; Department of System Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Zainab Abiola Amoo
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Hardoi Road, Lucknow, 226003, UP, India
| | - M Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria
| | - Velayudhan Rema
- Department of System Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Afolabi C Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Research Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure 340001, Nigeria.
| |
Collapse
|
9
|
Li W, Wei L, Wang B, Gao S, Huang T, Li Z, Bhattarai R, Wang H, Guo Y, Chen C. The trend of indirect anastomosis formation in a 2-vessel occlusion plus encephalo-myo-synangiosis rat model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:19. [PMID: 33553312 PMCID: PMC7859809 DOI: 10.21037/atm-20-2936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Basic research on the factors influencing indirect anastomosis formation in a 2-vessel occlusion plus encephalo-myo-synangiosis (2VO + EMS) rat model is conducive to improving the efficacy of indirect revascularization surgery in the clinic. However, the time point at which anastomosis between the rat temporal muscle (TM) and brain naturally has the greatest effect after encephalo-myo-synangiosis (EMS) remains unknown. Therefore, we conducted this study to explore the peak time of indirect anastomosis formation in the 2VO + EMS rat model. Methods Forty 2VO + EMS rats were randomly divided into five groups (n=8) according to the length of time (by week) after EMS, and 2VO rats were used as the control group (n=8). The expression of vascular endothelial growth factor (VEGF) and CD31 on the EMS side of the brain, perfusion ratio [improvement of cerebral blood perfusion (CBP) on the EMS side] and Morris water maze (MWM) results were compared between groups. Furthermore, the trends of the above variables were explored over weeks. Results Overall, the expression of VEGF and CD31, the perfusion ratio and the cognitive improvement in the 2VO + EMS rat model gradually increased over weeks after EMS. The VEGF and CD31 expression (as detected by immunofluorescence), perfusion ratio and number of times crossing the platform area peaked at 4 weeks after EMS. In addition, both the escape latency and the time spent in the target quadrant peaked in the fifth week after EMS. Conclusions After establishing the 2VO + EMS rat model, the degree of endothelial cell (EC) proliferation and CBP improvement on the EMS side of the brain peaked at 4 weeks after EMS, whereas the cognitive improvement peaked in the fifth week.
Collapse
Affiliation(s)
- Wensheng Li
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bocheng Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuangqi Gao
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tengchao Huang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhangyu Li
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Robin Bhattarai
- Department of Neurosurgery, Annapurna Neurological Institute & Allied Sciences, Kathmandu, Nepal
| | - Hui Wang
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Guo
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuan Chen
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Akinmoladun AC, Obadaye TS, Olaleye MT, Akindahunsi AA. Prophylaxis with a multicomponent nutraceutical abates transient cerebral ischemia/reperfusion injury. J Food Biochem 2020; 45:e13351. [PMID: 32614085 DOI: 10.1111/jfbc.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/01/2022]
Abstract
The effect of a multicomponent nutraceutical on cerebral ischemia/reperfusion injury in male Wistar rats was investigated. Animals were administered with the nutraceutical, Trévo™, for 7 days before 30 min of bilateral common carotid artery occlusion-induced cerebral ischemia and 24 hr of reperfusion. Behavioral assessment, biochemical estimations in the brain cortex, striatum, and hippocampus, and hippocampal histopathological evaluation were carried out after treatments. Results showed that ischemia/reperfusion-induced motor and cognitive deficits were abated in rats pretreated with Trévo™. Additionally, prophylaxis with Trévo™ blunted ischemia/reperfusion-induced redox stress, proinflammatory events, disturbances in neurotransmitter metabolism, mitochondrial dysfunction, and histoarchitectural aberrations in the discreet brain regions. In summary, supplementation with Trévo™ provided neuroprotection to rats against transient cerebral ischemia/reperfusion injury and could be explored as a promising approach in stroke prevention. PRACTICAL APPLICATIONS: There is a worldwide increase in the incidence of cerebral ischemia or stroke. Although an advanced health care system and effective control of risk factors have led to the declining incidence in developed nations, a definitive cure for stroke remains elusive and the situation is growing worse in developing nations. The results of the present study revealed that supplementation with Trévo™ ameliorated neurobehavioral, neurochemical, and histopathological consequences of brain ischemia/reperfusion injury and could, therefore, be beneficial in stroke prevention and management.
Collapse
Affiliation(s)
| | - Tobi S Obadaye
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Mary T Olaleye
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
11
|
Neurotherapeutic potential of kolaviron on neurotransmitter dysregulation, excitotoxicity, mitochondrial electron transport chain dysfunction and redox imbalance in 2-VO brain ischemia/reperfusion injury. Biomed Pharmacother 2019; 111:859-872. [DOI: 10.1016/j.biopha.2018.12.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 02/05/2023] Open
|
12
|
Yin C, Deng Y, Liu Y, Gao J, Yan L, Gong Q. Icariside II Ameliorates Cognitive Impairments Induced by Chronic Cerebral Hypoperfusion by Inhibiting the Amyloidogenic Pathway: Involvement of BDNF/TrkB/CREB Signaling and Up-Regulation of PPARα and PPARγ in Rats. Front Pharmacol 2018; 9:1211. [PMID: 30405422 PMCID: PMC6206175 DOI: 10.3389/fphar.2018.01211] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is regarded as a high-risk factor for cognitive decline of vascular dementia (VD) as it is conducive to induce beta-amyloid (Aβ) aggregation. Icariside II (ICS II), a plant-derived flavonoid compound, has showed neuroprotective effect on animal models of Alzheimer’s disease (AD) by decreasing Aβ levels. Here, we assessed the effect of ICS II on CCH-induced cognitive deficits and Aβ levels in rats, and the possible underlying mechanisms were also explored. It was disclosed that CCH induced by bilateral common carotid artery occlusion (BCCAO) caused cognitive deficits, neuronal injury and increase of Aβ1-40 and Aβ1-42 levels in the rat hippocampus, while oral administration of ICS II for 28 days abolished the above deficits in the hippocampus of BCCAO rats. Meanwhile, ICS II significantly decreased the expression of beta-amyloid precursor protein (APP) and β-site amyloid precursor protein cleavage enzyme 1 (BACE1), as well as increased the expression of a disintegrin and metalloproteinase domain 10 (ADAM10) and insulin-degrading enzyme (IDE). ICS II also activated peroxisome proliferator-activated receptor (PPAR)α and PPARγ, enhanced the expression of brain-derived neurotrophic factor (BDNF), tyrosine receptor kinase B (TrkB), levels of Akt and cAMP response element binding protein (CREB) phosphorylation. Together, these findings suggested that ICS II attenuates CCH-induced cognitive deficits by inhibiting the amyloidogenic pathway via involvement of BDNF/TrkB/CREB signaling and up-regulation of PPARα and PPARγ in rats.
Collapse
Affiliation(s)
- Caixia Yin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuanyuan Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuangui Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Lingli Yan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|