1
|
Wu R, Dong Z, Liu Y, Xin J, Duan Y, Zheng H, Yang Y, Fu H, Zhong Z, Liu H, Zhou Z, Huang Y, Peng G. Bacteriophage P2-71: a promising therapeutic against multidrug-resistant Proteus mirabilis in urinary tract infections. Front Vet Sci 2024; 11:1445264. [PMID: 39376913 PMCID: PMC11457703 DOI: 10.3389/fvets.2024.1445264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Background Proteus mirabilis is a Gram-negative, rod-shaped bacterium widely found in natural environments. It is known for causing a range of severe illnesses in mammals, particularly urinary tract infections (UTIs). This study evaluates the therapeutic efficacy of phage P2-71 against Proteus mirabilis in vivo and in vitro environments. Methods The in vitro therapeutic potential of bacteriophage P2-71 was assessed through the ability of phage to kill Proteus mirabilis by using a plate counting assay, and biofilm inhibition and biofilm lysis assays using a microtitre plate method. Additionally, an in vivo UTI model in C57BL/6Jmice was developed via urethral inoculation of the bacterium. Phage therapy was administered through urethral injection over a period of 5 days. Therapeutic outcomes were measured by analyzing bacterial load, phage titer, inflammatory markers, and histopathological changes in the urine, urogenital tissues, and spleen. Results In vitro, bacteriophage P2-71 achieved significant reductions in P. mirabilis concentrations, with log reductions of 1.537 and 0.7009 CFU/mL in laboratory and urine environments, respectively (p < 0.001). The phage also decreased biofilm formation by 34-49% and lysed 15-25% of mature biofilms at various multiplicities of infection (MOIs) (p < 0.001). In vivo, phage treatment significantly lowered bacterial concentrations in the urine on Days 1 and 3 (p < 0.0001), achieving a maximum reduction of 4.602 log₁₀ CFU/mL; however, its effectiveness diminished by Day 5 (p > 0.05). Concurrently, phage titers decreased over time. Importantly, phage treatment notably reduced bacterial load in the bladder, kidneys, and spleen (p < 0.001). Inflammatory markers such as IL-6, IL-1β, and TNF-α were significantly lower in the treatment group, especially in the bladder (p < 0.0001), indicating an effective reduction in inflammation. Histopathological analysis showed significant mitigation of tissue damage. Conclusion The results demonstrated that bacteriophage P2-71 is a promising alternative therapy for UTIs caused by MDR Proteus mirabilis. This bacteriophage therapy offers a viable strategy for managing infections where traditional antimicrobials fail, highlighting its potential in clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Rafiee M, Tabarraei A, Yazdi M, Ghaemi EA. Isolation of lytic bacteriophages and their relationships with the adherence genes of Staphylococcus saprophyticus. BMC Res Notes 2024; 17:200. [PMID: 39039580 PMCID: PMC11265347 DOI: 10.1186/s13104-024-06864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE This study aimed to introduce a lytic bacteriophage against Staphylococcus saprophyticus from wastewater in Gorgan, northern Iran. RESULTS The vB_SsapS-46 phage was isolated from urban wastewater and formed round and clear plaques on bacterial culture. It was visualized by electron microscopy and had a large head (approximately 106 nm) and a long tail (approximately 150 nm), indicating that it belongs to the Siphoviridae family. The host range of vB_SsapS-46 was determined using a spot test on 35 S. saprophyticus clinical isolates, and it was able to lyse 12 of the 35 clinical isolates (34%). Finally, the relationship between phage sensitivity and adherence genes was assessed, revealing no significant correlation between phage sensitivity and the frequency of adherence genes. The vB_SsapS-46 phage can be used alone or in a mixture in future studies to control urinary tract infections caused by this bacterium, especially in the elimination of drug-resistant pathogens.
Collapse
Affiliation(s)
- Maryam Rafiee
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahsa Yazdi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Ezzat Allah Ghaemi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
3
|
Khazani Asforooshani M, Elikaei A, Abed S, Shafiei M, Barzi SM, Solgi H, Badmasti F, Sohrabi A. A novel Enterococcus faecium phage EF-M80: unveiling the effects of hydrogel-encapsulated phage on wound infection healing. Front Microbiol 2024; 15:1416971. [PMID: 39006751 PMCID: PMC11239553 DOI: 10.3389/fmicb.2024.1416971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Background Enterococcus faecium is one of the members of ESKAPE pathogens. Due to its resistance to antimicrobial agents, treating this bacterium has become challenging. The development of innovative approaches to combat antibiotic resistance is necessary. Phage therapy has emerged as a promising method for curing antibiotic-resistant bacteria. Methods In this study, E. faecium phages were isolated from wastewater. Phage properties were characterized through in vitro assays (e.g. morphological studies, and physicochemical properties). In addition, whole genome sequencing was performed. A hydrogel-based encapsulated phage was obtained and its structure characteristics were evaluated. Wound healing activity of the hydrogel-based phage was assessed in a wound mice model. Results The purified phage showed remarkable properties including broad host range, tolerance to high temperature and pH and biofilm degradation feature as a stable and reliable therapeutic agent. Whole genome sequencing revealed that the genome of the EF-M80 phage had a length of 40,434 bp and harbored 65 open reading frames (ORFs) with a GC content of 34.9% (GenBank accession number is OR767211). Hydrogel-based encapsulated phage represented an optimized structure. Phage-loaded hydrogel-treated mice showed that the counting of neutrophils, fibroblasts, blood vessels, hair follicles and percentage of collagen growth were in favor of the wound healing process in the mice model. Conclusion These findings collectively suggest the promising capability of this phage-based therapeutic strategy for the treatment of infections associated with the antibiotic-resistant E. faecium. In the near future, we hope to expect the presence of bacteriophages in the list of antibacterial compounds used in the clinical settings.
Collapse
Affiliation(s)
- Mahshid Khazani Asforooshani
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Aria Sohrabi
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Kovacs CJ, Rapp EM, Rankin WR, McKenzie SM, Brasko BK, Hebert KE, Bachert BA, Kick AR, Burpo FJ, Barnhill JC. Combinations of Bacteriophage Are Efficacious against Multidrug-Resistant Pseudomonas aeruginosa and Enhance Sensitivity to Carbapenem Antibiotics. Viruses 2024; 16:1000. [PMID: 39066163 PMCID: PMC11281517 DOI: 10.3390/v16071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy has received renewed attention as an alternative therapeutic option against recalcitrant bacterial infections, both as multi-phage cocktails and in combination with antibiotics as synergistic pairings. Environmental screening and phage enrichment has yielded three lytic viruses capable of infecting the MDR P. aeruginosa strain PAO1. Co-administration of each phage with the carbapenem antibiotics ertapenem, imipenem, and meropenem generated enhanced overall killing of bacteria beyond either phage or drug treatments alone. A combination cocktail of all three phages was completely inhibitory to growth, even without antibiotics. The same 3× phage cocktail also disrupted PAO1 biofilms, reducing biomass by over 75% compared to untreated biofilms. Further, the phage cocktail demonstrated broad efficacy as well, capable of infecting 33 out of 100 diverse clinical isolate strains of P. aeruginosa. Together, these results indicate a promising approach for designing layered medical countermeasures to potentiate antibiotic activity and possibly overcome resistance against recalcitrant, MDR bacteria such as P. aeruginosa. Combination therapy, either by synergistic phage-antibiotic pairings, or by phage cocktails, presents a means of controlling mutations that can allow for bacteria to gain a competitive edge.
Collapse
Affiliation(s)
- Christopher J. Kovacs
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Erika M. Rapp
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - William R. Rankin
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Sophia M. McKenzie
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Brianna K. Brasko
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Katherine E. Hebert
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Beth A. Bachert
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Andrew R. Kick
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - F. John Burpo
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| | - Jason C. Barnhill
- United States Military Academy, West Point, NY 10996, USA; (C.J.K.); (E.M.R.); (W.R.R.); (S.M.M.); (B.K.B.); (K.E.H.); (B.A.B.); (A.R.K.); (F.J.B.)
| |
Collapse
|
5
|
Kovacs CJ, Rapp EM, McKenzie SM, Mazur MZ, Mchale RP, Brasko B, Min MY, Burpo FJ, Barnhill JC. Disruption of Biofilm by Bacteriophages in Clinically Relevant Settings. Mil Med 2024; 189:e1294-e1302. [PMID: 37847552 DOI: 10.1093/milmed/usad385] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacteria are a growing threat to civilian and military health today. Although infections were once easily treatable by antibiotics and wound cleaning, the frequent mutation of bacteria has created strains impermeable to antibiotics and physical attack. Bacteria further their pathogenicity because of their ability to form biofilms on wounds, medical devices, and implant surfaces. Methods for treating biofilms in clinical settings are limited, and when formed by antibiotic-resistant bacteria, can generate chronic infections that are recalcitrant to available therapies. Bacteriophages are natural viral predators of bacteria, and their ability to rapidly destroy their host has led to increased attention in potential phage therapy applications. MATERIALS AND METHODS The present article sought to address a knowledge gap in the available literature pertaining to the usage of bacteriophage in clinically relevant settings and the resolution of infections particular to military concerns. PRISMA guidelines were followed for a systematic review of available literature that met the criteria for analysis and inclusion. The research completed for this review article originated from the U.S. Military Academy's library "Scout" search engine, which complies results from 254 available databases (including PubMed, Google Scholar, and SciFinder). The search criteria included original studies that employed bacteriophage use against biofilms, as well as successful phage therapy strategies for combating chronic bacterial infections. We specifically explored the use of bacteriophage against antibiotic- and treatment-resistant bacteria. RESULTS A total of 80 studies were identified that met the inclusion criteria following PRISMA guidelines. The application of bacteriophage has been demonstrated to robustly disrupt biofilm growth in wounds and on implant surfaces. When traditional therapies have failed to disrupt biofilms and chronic infections, a combination of these treatments with phage has proven to be effective, often leading to complete wound healing without reinfection. CONCLUSIONS This review article examines the available literature where bacteriophages have been utilized to treat biofilms in clinically relevant settings. Specific attention is paid to biofilms on implant medical devices, biofilms formed on wounds, and clinical outcomes, where phage treatment has been efficacious. In addition to the clinical benefit of phage therapies, the military relevance and treatment of combat-related infections is also examined. Phages offer the ability to expand available treatment options in austere environments with relatively low cost and effort, allowing the impacted warfighter to return to duty quicker and healthier.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Erika M Rapp
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sophia M McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Michael Z Mazur
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Riley P Mchale
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Briana Brasko
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Michael Y Min
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - F John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Jason C Barnhill
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
6
|
Dong Z, Wu R, Liu L, Ai S, Yang J, Li Q, Fu K, Zhou Y, Fu H, Zhou Z, Liu H, Zhong Z, Qiu X, Peng G. Phage P2-71 against multi-drug resistant Proteus mirabilis: isolation, characterization, and non-antibiotic antimicrobial potential. Front Cell Infect Microbiol 2024; 14:1347173. [PMID: 38500503 PMCID: PMC10945010 DOI: 10.3389/fcimb.2024.1347173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Proteus mirabilis, a prevalent urinary tract pathogen and formidable biofilm producer, especially in Catheter-Associated Urinary Tract Infection, has seen a worrying rise in multidrug-resistant (MDR) strains. This upsurge calls for innovative approaches in infection control, beyond traditional antibiotics. Our research introduces bacteriophage (phage) therapy as a novel non-antibiotic strategy to combat these drug-resistant infections. We isolated P2-71, a lytic phage derived from canine feces, demonstrating potent activity against MDR P. mirabilis strains. P2-71 showcases a notably brief 10-minute latent period and a significant burst size of 228 particles per infected bacterium, ensuring rapid bacterial clearance. The phage maintains stability over a broad temperature range of 30-50°C and within a pH spectrum of 4-11, highlighting its resilience in various environmental conditions. Our host range assessment solidifies its potential against diverse MDR P. mirabilis strains. Through killing curve analysis, P2-71's effectiveness was validated at various MOI levels against P. mirabilis 37, highlighting its versatility. We extended our research to examine P2-71's stability and bactericidal kinetics in artificial urine, affirming its potential for clinical application. A detailed genomic analysis reveals P2-71's complex genetic makeup, including genes essential for morphogenesis, lysis, and DNA modification, which are crucial for its therapeutic action. This study not only furthers the understanding of phage therapy as a promising non-antibiotic antimicrobial but also underscores its critical role in combating emerging MDR infections in both veterinary and public health contexts.
Collapse
Affiliation(s)
- Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruihu Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengquan Ai
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keyi Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunian Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Luo J, Xie L, Yang M, Liu M, Li Q, Wang P, Fan J, Jin J, Luo C. Synergistic Antibacterial Effect of Phage pB3074 in Combination with Antibiotics Targeting Cell Wall against Multidrug-Resistant Acinetobacter baumannii In Vitro and Ex Vivo. Microbiol Spectr 2023; 11:e0034123. [PMID: 37260382 PMCID: PMC10434185 DOI: 10.1128/spectrum.00341-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Synergistic effects of phages in combination with antibiotics have received increasing attention. In this present study, we isolated a new phage pB3074 against clinically isolated multidrug-resistant Acinetobacter baumannii. Phage pB3074 combined with cell wall-targeting antibiotics could produce synergistic antibacterial effect in vitro bactericidal activities. Further research indicates that the bacteriophage dose is critical to synergistic antimicrobial effect of phage and antibiotic combination. Cefotaxime and meropenem were selected as the representative cell wall-targeting antibiotics for further synergistic antibacterial study. Results illustrated that phage pB3074 and cefotaxime or meropenem combination was very effective for the removal of mature biofilm and inhibition of biofilm formation. In a pig skin explant model, results also showed that phage pB3074 and cefotaxime or meropenem combination was very effective for the treatment of wound infection ex vivo. Subsequent studies showed that some extent recovery of drug sensitivity to cell wall-targeting antibiotics might be vital mechanism of synergistic antibacterial effect between bacteriophage pB3074 and these antibiotics. The existence of antibiotics could promote phage adsorption and proliferation, which might also be potential mechanism for synergistic antibacterial activities and have been observed in cefotaxime and meropenem application. In summary, results in the current study demonstrated that phage pB3074 has the potential to be developed as an antibacterial agent and combined application of phages and antibiotics might be a new choice for the treatment of current multidrug-resistant bacterial infections. IMPORTANCE Combined application of phages and antibiotics cannot only effectively inhibit the appearance of phage-resistant bacteria, but also reduce the effective use concentration of antibiotics, and even make some bacteria regain sensitivity to some resistant antibiotics. Therefore, phage-antibiotic combination (PAC) could improve the antibacterial activity of individual drug, providing a new choice for clinical treatment of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jun Luo
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, China
| | - Libo Xie
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, China
| | - Min Yang
- Yunnan Center for Disease Control and Prevention, Yunnan, China
| | - Min Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, China
| | - Qianyuan Li
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, China
| | - Peng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, China
| | - Jinhong Fan
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, China
| | - Jing Jin
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, China
| | - Chunhua Luo
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, China
| |
Collapse
|
8
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
9
|
Ali S, Karaynir A, Salih H, Öncü S, Bozdoğan B. Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from university hospital sewage. Virus Res 2023; 326:199049. [PMID: 36717023 DOI: 10.1016/j.virusres.2023.199049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
The crystalline formation of biofilms by Proteus blocks the urine flow which often complicates the health care of catheterized patients. Bacteriophages has been highlighted as a promising tool to control biofilm-mediated bacterial infections. Here, we isolated and characterized two newly isolated lytic phages capable of infecting clinical isolates of P. mirabilis and P. vulgaris. Moreover, insights regarding the biological and molecular characterization were analysed. Both RP6 and RP7 phages showed a Proteus-genus-specific profile, administering no lytic activity against other family of Enterobacteriaceae. The optimal MOI value of the RP6 and RP7 phages were determined as 0.1 and 0.01, respectively. The one-step growth curve showed that RP6 and RP7 phages have a short latent period of 20 min and large burst size of 220-371 PFU/ML per infected host cell. Bacteria growth was reduced immediately after the phages were added, which is shown by the optical density (OD) measurement after 24 hr. Proteus phage RP6 and RP7 were found to eradicate both the planktonic and mature biofilms produced by the Proteus isolates tested. Genome sequence of Proteus phage RP6 was found to be 58,619 bp, and a G-C content of 47%. Also, Proteus phage RP7 genome size was 103,593 bp with G-C ratio of 38.45%. A total of 70 and 172 open reading frame (ORF) was encoded in RP6 and RP7 phage genomes, respectively. Interestingly, there were no tRNA encoded by Proteus phage RP6 genome even though there is a significant G-C content difference between the phage and its host. Additionally, the exhibition of highly lytic activity and absence of virulence and antibiotic-resistant genes in both Proteus RP6 and RP7 phages emphasized that this newly isolated phages are promising for potential therapeutic phages.
Collapse
Affiliation(s)
- Sahd Ali
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye.
| | - Abdulkerim Karaynir
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye
| | - Hanife Salih
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye
| | - Serkan Öncü
- Medical Faculty, Department of Infectious Diseases and Clinical Microbiology, Aydin Adnan Menderes University, Turkiye
| | - Bülent Bozdoğan
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye; Medical Faculty, Department of Medical Microbiology, Aydın Adnan Menderes University, Turkiye
| |
Collapse
|
10
|
Genomic analysis and biological characterization of a novel Schitoviridae phage infecting Vibrio alginolyticus. Appl Microbiol Biotechnol 2023; 107:749-768. [PMID: 36520169 DOI: 10.1007/s00253-022-12312-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Vibrio alginolyticus is a Gram-negative bacterium commonly associated with mackerel poisoning. A bacteriophage that specifically targets and lyses this bacterium could be employed as a biocontrol agent for treating the bacterial infection or improving the shelf-life of mackerel products. However, only a few well-characterized V. alginolyticus phages have been reported in the literature. In this study, a novel lytic phage, named ΦImVa-1, specifically infecting V. alginolyticus strain ATCC 17749, was isolated from Indian mackerel. The phage has a short latent period of 15 min and a burst size of approximately 66 particles per infected bacterium. ΦImVa-1 remained stable for 2 h at a wide temperature (27-75 °C) and within a pH range of 5 to 10. Transmission electron microscopy revealed that ΦImVa-1 has an icosahedral head of approximately 60 nm in diameter with a short tail, resembling those in the Schitoviridae family. High throughput sequencing and bioinformatics analysis elucidated that ΦImVa-1 has a linear dsDNA genome of 77,479 base pairs (bp), with a G + C content of ~ 38.72% and 110 predicted gene coding regions (106 open reading frames and four tRNAs). The genome contains an extremely large virion-associated RNA polymerase gene and two smaller non-virion-associated RNA polymerase genes, which are hallmarks of schitoviruses. No antibiotic genes were found in the ΦImVa-1 genome. This is the first paper describing the biological properties, morphology, and the complete genome of a V. alginolyticus-infecting schitovirus. When raw mackerel fish flesh slices were treated with ΦImVa-1, the pathogen loads reduced significantly, demonstrating the potential of the phage as a biocontrol agent for V. alginolyticus strain ATCC 17749 in the food. KEY POINTS: • A novel schitovirus infecting Vibrio alginolyticus ATCC 17749 was isolated from Indian mackerel. • The complete genome of the phage was determined, analyzed, and compared with other phages. • The phage is heat stable making it a potential biocontrol agent in extreme environments.
Collapse
|
11
|
Aslam B, Siddique MH, Siddique AB, Shafique M, Muzammil S, Khurshid M, Rasool MH, Ahmad M, Chaudhry TH, Amir A, Salman M, Baloch Z, Alturki NA, Alzamami A. Distribution of mcr-1 Harboring Hypervirulent Klebsiella pneumoniae in Clinical Specimens and Lytic Activity of Bacteriophage KpnM Against Isolates. Infect Drug Resist 2022; 15:5795-5811. [PMID: 36213765 PMCID: PMC9534162 DOI: 10.2147/idr.s374503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background The World Health Organization (WHO) has declared the multi-drug resistant (MDR) Klebsiella pneumoniae as one of the critical bacterial pathogens. The dearth of new antibiotics and inadequate therapeutic options necessitate finding alternative options. Bacteriophages are known as enemies of bacteria and are well-recognized to fight MDR pathogens. Methods A total of 150 samples were collected from different clinical specimens through a convenient sampling technique. Isolation, identification, and antibiotic susceptibility testing (AST) of K. pneumoniae were done by standard and validated microbiological procedures. Molecular identification of virulence factors and antibiotic resistance genes (ARGs) was carried out through polymerase chain reaction (PCR) by using specific primers. For bacteriophage isolation, hospital sewage samples were processed for phage enrichment, purification, and further characterization ie, transmission electron microscopy (TEM) and stability testing, etc. followed by evaluation of the lytic potential of the phage. Results Overall, a total of 41% of isolates of K. pneumoniae were observed as hypervirulent K. pneumoniae (hvKp). Among hvKp, a total of 12 (42%) were detected as MDR hvKp. A total of 37% of all MDR isolates were found resistant to colistin, and 66% of the colistin resistance isolates were recorded as mcr-1 positive. Isolated phage KpnM had shown lytic activity against 53 (79%) K. pneumoniae isolates. Remarkably, all 8 mcr-1 harboring MDR hvKp and non-hvKp isolates were susceptible to KpnM phage. Conclusion Significant distribution of mcr-1 harboring hypervirulent Klebsiella pneumoniae was observed in clinical specimens, which is worrisome for the health system of the country. Characterized phage KpnM exhibited encouraging results and showed the lytic activity against the mcr-1 harboring hvKp isolates, which may be used as a prospective alternative control strategy to fight this ominous bacterium.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- Correspondence: Bilal Aslam, Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan, Email
| | - Muhammad Hussnain Siddique
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Moeed Ahmad
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tamoor Hamid Chaudhry
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Afreenish Amir
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
- Ahmad Alzamami, Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia, Email
| |
Collapse
|
12
|
Aaron J, van Zyl LJ, Dicks LMT. Isolation and Characterization of Lytic Proteus Virus 309. Viruses 2022; 14:1309. [PMID: 35746779 PMCID: PMC9229222 DOI: 10.3390/v14061309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Proteus mirabilis is frequently associated with complicated urinary tract infections (UTIs) and is the main cause of catheter-associated urinary tract infections (CAUTIs). Treatment of such infections is complicated and challenging due to the biofilm forming abilities of P. mirabilis. If neglected or mistreated, infections may lead to life-threating conditions such as cystitis, pyelonephritis, kidney failure, and bacteremia that may progress to urosepsis. Treatment with antibiotics, especially in cases of recurring and persistent infections, leads to the development of resistant strains. Recent insights into phage therapy and using phages to coat catheters have been evaluated with many studies showing promising results. Here, we describe a highly lytic bacteriophage, Proteus_virus_309 (41,740 bp), isolated from a wastewater treatment facility in Cape Town, South Africa. According to guidelines of the International Committee on Taxonomy of Viruses (ICTV), bacteriophage 309 is a species within the genus Novosibovirus. Similar to most members of the genus, bacteriophage 309 is strain-specific and lyse P. mirabilis in less than 20 min.
Collapse
Affiliation(s)
- Joshua Aaron
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Leonardo J. van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville 7535, South Africa;
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
13
|
The Chronic Wound Phageome: Phage Diversity and Associations with Wounds and Healing Outcomes. Microbiol Spectr 2022; 10:e0277721. [PMID: 35435739 PMCID: PMC9248897 DOI: 10.1128/spectrum.02777-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Two leading impediments to chronic wound healing are polymicrobial infection and biofilm formation. Recent studies have characterized the bacterial fraction of these microbiomes and have begun to elucidate compositional correlations to healing outcomes. However, the factors that drive compositional shifts are still being uncovered. The virome may play an important role in shaping bacterial community structure and function. Previous work on the skin virome determined that it was dominated by bacteriophages, viruses that infect bacteria. To characterize the virome, we enrolled 20 chronic wound patients presenting at an outpatient wound care clinic in a microbiome survey, collecting swab samples from healthy skin and chronic wounds (diabetic, venous, arterial, or pressure) before and after a single, sharp debridement procedure. We investigated the virome using a virus-like particle enrichment procedure, shotgun metagenomic sequencing, and a k-mer-based, reference-dependent taxonomic classification method. Taxonomic composition, diversity, and associations with covariates are presented. We find that the wound virome is highly diverse, with many phages targeting known pathogens, and may influence bacterial community composition and functionality in ways that impact healing outcomes. IMPORTANCE Chronic wounds are an increasing medical burden. These wounds are known to be rich in microbial content, including both bacteria and bacterial viruses (phages). The viruses may play an important role in shaping bacterial community structure and function. We analyzed the virome and bacterial composition of 20 patients with chronic wounds. The viruses found in wounds are highly diverse compared to normal skin, unlike the bacterial composition, where diversity is decreased. These data represent an initial look at this relatively understudied component of the chronic wound microbiome and may help inform future phage-based interventions.
Collapse
|
14
|
Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, Cater K, Knežević P, Winogradow C, Amaro K, Jończyk-Matysiak E, Weber-Dąbrowska B, Rękas J, Górski A. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J Biomed Sci 2022; 29:23. [PMID: 35354477 PMCID: PMC8969238 DOI: 10.1186/s12929-022-00806-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/24/2022] [Indexed: 01/04/2023] Open
Abstract
Bacteriophages (phages) may be used as an alternative to antibiotic therapy for combating infections caused by multidrug-resistant bacteria. In the last decades, there have been studies concerning the use of phages and antibiotics separately or in combination both in animal models as well as in humans. The phenomenon of phage–antibiotic synergy, in which antibiotics may induce the production of phages by bacterial hosts has been observed. The potential mechanisms of phage and antibiotic synergy was presented in this paper. Studies of a biofilm model showed that a combination of phages with antibiotics may increase removal of bacteria and sequential treatment, consisting of phage administration followed by an antibiotic, was most effective in eliminating biofilms. In vivo studies predominantly show the phenomenon of phage and antibiotic synergy. A few studies also describe antagonism or indifference between phages and antibiotics. Recent papers regarding the application of phages and antibiotics in patients with severe bacterial infections show the effectiveness of simultaneous treatment with both antimicrobials on the clinical outcome.
Collapse
Affiliation(s)
- Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006, Warsaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148, Wrocław, Poland
| | - Kathryn Cater
- Rush University Medical Center, 1620 W. Harrison St., Chicago, IL, 60612, USA
| | - Petar Knežević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000, Novi Sad, Republic of Serbia
| | - Cyprian Winogradow
- Faculty of Life Sciences, University College London, London, WC1E 6BT, UK
| | | | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Justyna Rękas
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Phage Therapy Unit, Medical Center of the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114, Wrocław, Poland.,Infant Jesus Hospital, Medical University of Warsaw, 02-005, Warsaw, Poland
| |
Collapse
|
15
|
Rice CJ, Kelly SA, O’Brien SC, Melaugh EM, Ganacias JCB, Chai ZH, Gilmore BF, Skvortsov T. Novel Phage-Derived Depolymerase with Activity against Proteus mirabilis Biofilms. Microorganisms 2021; 9:2172. [PMID: 34683494 PMCID: PMC8539402 DOI: 10.3390/microorganisms9102172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
The adherence of Proteus mirabilis to the surface of urinary catheters leads to colonization and eventual blockage of the catheter lumen by unique crystalline biofilms produced by these opportunistic pathogens, making P. mirabilis one of the leading causes of catheter-associated urinary tract infections. The Proteus biofilms reduce efficiency of antibiotic-based treatment, which in turn increases the risk of antibiotic resistance development. Bacteriophages and their enzymes have recently become investigated as alternative treatment options. In this study, a novel Proteus bacteriophage (vB_PmiS_PM-CJR) was isolated from an environmental sample and fully characterized. The phage displayed depolymerase activity and the subsequent genome analysis revealed the presence of a pectate lyase domain in its tail spike protein. The protein was heterologously expressed and purified; the ability of the purified tail spike to degrade Proteus biofilms was tested. We showed that the application of the tail spike protein was able to reduce the adherence of bacterial biofilm to plastic pegs in a MBEC (minimum biofilm eradication concentration) assay and improve the survival of Galleria mellonella larvae infected with Proteus mirabilis. Our study is the first to successfully isolate and characterize a biofilm depolymerase from a Proteus phage, demonstrating the potential of this group of enzymes in treatment of Proteus infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Timofey Skvortsov
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.R.); (S.A.K.); (S.C.O.); (E.M.M.); (J.C.B.G.); (Z.H.C.); (B.F.G.)
| |
Collapse
|
16
|
Mallick B, Mondal P, Dutta M. Morphological, biological, and genomic characterization of a newly isolated lytic phage Sfk20 infecting Shigella flexneri, Shigella sonnei, and Shigella dysenteriae1. Sci Rep 2021; 11:19313. [PMID: 34588569 PMCID: PMC8481304 DOI: 10.1038/s41598-021-98910-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
Shigellosis, caused by Shigella bacterial spp., is one of the leading causes of diarrheal morbidity and mortality. An increasing prevalence of multidrug-resistant Shigella species has revived the importance of bacteriophages as an alternative therapy to antibiotics. In this study, a novel bacteriophage, Sfk20, has been isolated from water bodies of a diarrheal outbreak area in Kolkata (India) with lytic activity against many Shigella spp. Phage Sfk20 showed a latent period of 20 min and a large burst size of 123 pfu per infected cell in a one-step growth analysis. Phage-host interaction and lytic activity confirmed by phage attachment, intracellular phage development, and bacterial cell burst using ultrathin sectioning and TEM analysis. The genomic analysis revealed that the double-stranded DNA genome of Sfk20 contains 164,878 bp with 35.62% G + C content and 241 ORFs. Results suggested phage Sfk20 to include as a member of the T4 myoviridae bacteriophage group. Phage Sfk20 has shown anti-biofilm potential against Shigella species. The results of this study imply that Sfk20 has good possibilities to be used as a biocontrol agent.
Collapse
Affiliation(s)
- Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India
| | - Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India.
| |
Collapse
|
17
|
Sharma S, Datta S, Chatterjee S, Dutta M, Samanta J, Vairale MG, Gupta R, Veer V, Dwivedi SK. Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa. Sci Rep 2021; 11:19393. [PMID: 34588479 PMCID: PMC8481504 DOI: 10.1038/s41598-021-98457-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
In recent years, the use of bacteriophages (or 'phages') against multidrug-resistant (MDR) bacteria including Pseudomonas aeruginosa has drawn considerable attention, globally. In this work, we report the isolation and detailed characterization of a highly lytic Pseudomonasphage DRL-P1 isolated from wastewater. Under TEM, DRL-P1 appeared as a member of the phage family Myoviridae. DRL-P1 featured rapid adsorption (~ 5 min), short-latency (~ 30 min), and large burst size (~ 100 PFU per infected cell). DRL-P1 can withstand a wide temperature range (4 °C to 40 °C) and pH (5.0 to 10.0) conditions. The 66,243 bp DRL-P1 genome (MN564818) encodes at least 93 ORFs, of which 36 were functionally annotated based on homology with similar phage proteins available in the databases. Comparative analyses of related genomes suggest an independent evolutionary history and discrete taxonomic position of DRL-P1 within genus Pbunavirus. No toxin or antibiotic resistance genes was identified. DRL-P1 is tolerant to lyophilization and encapsulation techniques and retained lytic activity even after 18 months of storage. We also demonstrated decontaminating potentials of DRL-P1 in vitro, on an artificially contaminated cover-slip model. To the best of our knowledge, this is the first Pbunavirus to be reported from India. Our study suggests DRL-P1 as a potential candidate for various applications.
Collapse
Affiliation(s)
- Sonika Sharma
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Sibnarayan Datta
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Soumya Chatterjee
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Moumita Dutta
- grid.419566.90000 0004 0507 4551National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, West Bengal India
| | - Jhuma Samanta
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Mohan G. Vairale
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Rajeev Gupta
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Vijay Veer
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| | - Sanjai K. Dwivedi
- grid.418942.20000 0004 1763 8350Defence Research Laboratory (DRL-DRDO), Tezpur, Assam India
| |
Collapse
|
18
|
Efficacy of three lytic bacteriophages for eradicating biofilms of multidrug-resistant Proteus mirabilis. Arch Virol 2021; 166:3311-3322. [PMID: 34559314 DOI: 10.1007/s00705-021-05241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Proteus mirabilis is one of the most frequent causes of catheter-associated urinary tract infections (CAUTIs) owing to its capability to colonize and develop crystalline multidrug-resistant (MDR) biofilms. Here, we report the isolation and partial characterization of three novel bacteriophages, vB_PmiM-ES1a, vB_PmiM-ES1b, and vB_PmiM-ES1c, which were active against the planktonic form and biofilms of the MDR P. mirabilis strain ES01, isolated from CAUTIs in Egypt. The antibiotic susceptibility profile of the P. mirabilis isolates showed resistance to most of the antibiotics tested. The isolated phages were identified morphologically using TEM, and each appeared to have myovirus-like morphology. The three phages displayed strong lytic activity and a narrow host range, and they were stable at different ranges of temperatures and pH values. One-step growth kinetics showed a lysis time of 180 min with a burst size of 99.6, 95, and 86 PFU/cell for phage vB_PmiM-ES1a, vB_PmiM-ES1b, and vB_PmiM-ES1c, respectively. The three phages exhibited different digestion patterns using different restriction enzymes. The genome size was estimated to be 59.39 kb, 62.19 kb, and 52.07 kb for phage vB_PmiM-ES1a, vB_PmiM-ES1b, and vB_PmiM-ES1c, respectively. A phage cocktail including the three phages showed a potential ability to reduce and eradicate a biofilm formed by the MDR Proteus mirabilis EG-ES1. Accordingly, a phage cocktail of vB_PmiM-ES1a, vB_PmiM-ES1b, and vB_PmiM-ES1c is considered a promising candidate for use as a biocontrol agent against MDR Proteus mirabilis bacteria.
Collapse
|
19
|
Isolation and Identification of Escherichia coli O157:H7 Lytic Bacteriophage from Environment Sewage. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:7383121. [PMID: 34423027 PMCID: PMC8376447 DOI: 10.1155/2021/7383121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022]
Abstract
Escherichia coli O157:H7 is one of the pathogenic bacteria causing foodborne disease. The use of lytic bacteriophages can be a good solution to overcome the disease. This study is aimed at isolating lytic bacteriophages from environmental sewage with E. coli O157:H7 bacterial cells. The sample used in this study was eight bacteriophages, and the technique used in identifying E. coli O157:H7 carriers of the stx1 and stx2 genes was PCR. The double layer plaque technique was used to classify bacteriophages. Plaque morphology, host specificity, and electron micrograph were used to identify the bacteriophages. The result obtained plaque morphology as a clear zone with the largest diameter size of 3.5 mm. Lytic bacteriophage could infect E. coli O157:H7 at the highest titer of 10 × 108 PFU/mL. Bacteriophages have been identified as Siphoviridae and Myoviridae. Phage 3, phage 4, and phage 8 could infect Atypical Diarrheagenic E. coli 1 (aDEC1) due to their host specificity. The Friedman statistical tests indicate that lytic bacteriophage can significantly lyse E. coli O157:H7 (p = 0.012). The lysis of E. coli O157:H7 by phage 1, phage 2, phage 3, and phage 5 bacteriophages was statistically significant, according to Conover's posthoc test (p < 0.05). The conclusion obtained from this study is that lytic bacteriophages from environmental sewage could lyse E. coli O157:H7. Therefore, it could be an alternative biocontrol agent against E. coli O157:H7 that contaminates food causing foodborne disease.
Collapse
|
20
|
CRISPR-Cas systems in Proteus mirabilis. INFECTION GENETICS AND EVOLUTION 2021; 92:104881. [PMID: 33905883 DOI: 10.1016/j.meegid.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a bacterial defense mechanism against bacteriophages composed of two different parts: the CRISPR array and the Cas genes. The spacer acquisition is done by the adaptation module consisting of the hallmark Cas1 Cas2 proteins, which inserts new spacers into the CRISPR array. Here we aimed to describe the CRISPR-Cas system in Proteus mirabilis (P. mirabilis) isolates. CRISPR loci was observed in 30 genomic contents of 109 P. mirabilis isolates that each locus was consisted of two CRISPR arrays and each array had a different preserved leader sequences. Only the type I-E CRISPR-Cas system was common in these isolates. The source of the spacers was identified, including phages and prophages. CRISPR spacer origin analysis also identified a conserved PAM sequence of 5'-AAG-3' nucleotide stretch. Through collecting spacers, CRISPR arrays of P. mirabilis isolates were expanded mostly by integration of bacteriophageal source of spacers. This study shows novel findings in the area of the P-mirabilis CRISPR-Cas system. In this regard, among analyzed genome of P. mirabilis isolates, Class I CRISR-Cas systems were dominant, and all belonged to type I-E. In the flanks of the CRISPR, some other elements with regulatory role were also found. A motif of 11 nt size was found to be preserved among the analyzed genome. We believe that it might has a CRISPR-Cas system transcription facilitator by targeting the Rho element.
Collapse
|
21
|
Chegini Z, Khoshbayan A, Vesal S, Moradabadi A, Hashemi A, Shariati A. Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: a narrative review. Ann Clin Microbiol Antimicrob 2021; 20:30. [PMID: 33902597 PMCID: PMC8077874 DOI: 10.1186/s12941-021-00433-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Multi-Drug Resistant (MDR) uropathogenic bacteria have increased in number in recent years and the development of new treatment options for the corresponding infections has become a major challenge in the field of medicine. In this respect, recent studies have proposed bacteriophage (phage) therapy as a potential alternative against MDR Urinary Tract Infections (UTI) because the resistance mechanism of phages differs from that of antibiotics and few side effects have been reported for them. Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis are the most common uropathogenic bacteria against which phage therapy has been used. Phages, in addition to lysing bacterial pathogens, can prevent the formation of biofilms. Besides, by inducing or producing polysaccharide depolymerase, phages can easily penetrate into deeper layers of the biofilm and degrade it. Notably, phage therapy has shown good results in inhibiting multiple-species biofilm and this may be an efficient weapon against catheter-associated UTI. However, the narrow range of hosts limits the use of phage therapy. Therefore, the use of phage cocktail and combination therapy can form a highly attractive strategy. However, despite the positive use of these treatments, various studies have reported phage-resistant strains, indicating that phage–host interactions are more complicated and need further research. Furthermore, these investigations are limited and further clinical trials are required to make this treatment widely available for human use. This review highlights phage therapy in the context of treating UTIs and the specific considerations for this application.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Alireza Moradabadi
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Abdelsattar AS, Dawoud A, Makky S, Nofal R, Aziz RK, El-Shibiny A. Bacteriophages: from isolation to application. Curr Pharm Biotechnol 2021; 23:337-360. [PMID: 33902418 DOI: 10.2174/1389201022666210426092002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Bacteriophages are considered as a potential alternative to fight pathogenic bacteria during the antibiotic resistance era. With their high specificity, they are being widely used in various applications: medicine, food industry, agriculture, animal farms, biotechnology, diagnosis, etc. Many techniques have been designed by different researchers for phage isolation, purification, and amplification, each of which has strengths and weaknesses. However, all aim at having a reasonably pure phage sample that can be further characterized. Phages can be characterized based on their physiological, morphological or inactivation tests. Microscopy, in particular, has opened a wide gate not only for visualizing phage morphological structure, but also for monitoring biochemistry and behavior. Meanwhile, computational analysis of phage genomes provides more details about phage history, lifestyle, and potential for toxigenic or lysogenic conversion, which translate to safety in biocontrol and phage therapy applications. This review summarizes phage application pipelines at different levels and addresses specific restrictions and knowledge gaps in the field. Recently developed computational approaches, which are used in phage genome analysis, are critically assessed. We hope that this assessment provides researchers with useful insights for selection of suitable approaches for Phage-related research aims and applications.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Alyaa Dawoud
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Rana Nofal
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Qasr El-Ainy St, Cairo. Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578. Egypt
| |
Collapse
|
23
|
Sabzali S, Bouzari M. Isolation, identification and some characteristics of two lytic bacteriophages against Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium from various food sources. FEMS Microbiol Lett 2021; 368:6217424. [PMID: 33830213 DOI: 10.1093/femsle/fnab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Salmonellosis is an important worldwide food-borne disease. Increasing resistance to Salmonella spp. has been reported in recent years, and now the prevalence of multidrug-resistant Salmonella spp. is a worldwide problem. This necessitates alternative approaches like phage therapy. This study aimed to isolate bacteriophages specific for Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium isolated from different sources (chicken meat, beef and eggshells). The antibiotic resistance profiles of the bacteria were determined by phenotypic and genotypic methods. The prevalence of extended-spectrum β-lactamase genes was examined by polymerase chain reaction. In total, 75% of the isolated Salmonella strains were resistant to tetracycline, whereas 70% of them were resistant to azithromycin. All of the isolates from beef were resistant to nalidixic acid. The most common extended-spectrum β-lactamase genes among the isolates were blaSHV (15%) followed by blaTEM (10%) and blaCTX (5%). Two specific bacteriophages were isolated and characterized. The host range for vB_SparS-ui was Salmonella Paratyphi B, S. enterica serovar Paratyphi A and S. enterica, while that for vB_StyS-sam phage was Salmonella Typhimurium and S. enterica serovar Enteritidis. The characteristics of the isolated phages indicate that they are proper candidates to be used to control some foodstuff contaminations and also phage therapy of infected animals.
Collapse
Affiliation(s)
- Somaieh Sabzali
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Majid Bouzari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| |
Collapse
|
24
|
Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J. Current challenges and future opportunities of phage therapy. FEMS Microbiol Rev 2021; 44:684-700. [PMID: 32472938 DOI: 10.1093/femsre/fuaa017] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance is a major public health challenge worldwide, whose implications for global health might be devastating if novel antibacterial strategies are not quickly developed. As natural predators of bacteria, (bacterio)phages may play an essential role in escaping such a dreadful future. The rising problem of antibiotic resistance has revived the interest in phage therapy and important developments have been achieved over the last years. But where do we stand today and what can we expect from phage therapy in the future? This is the question we set to answer in this review. Here, we scour the outcomes of human phage therapy clinical trials and case reports, and address the major barriers that stand in the way of using phages in clinical settings. We particularly address the potential of phage resistance to hinder phage therapy and discuss future avenues to explore the full capacity of phage therapy.
Collapse
Affiliation(s)
- Diana P Pires
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Rita Costa
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luciana Meneses
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
25
|
Doub JB, Ng VY, Wilson E, Corsini L, Chan BK. Successful Treatment of a Recalcitrant Staphylococcus epidermidis Prosthetic Knee Infection with Intraoperative Bacteriophage Therapy. Pharmaceuticals (Basel) 2021; 14:ph14030231. [PMID: 33800146 PMCID: PMC7998749 DOI: 10.3390/ph14030231] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Here, we present a case of a 79-year-old female with a recalcitrant Staphylococcal epidermidis prosthetic knee infection that was successfully treated with a single dose of adjuvant intra-articular bacteriophage therapy after debridement and implant retention surgery. The bacteriophage used in this case, PM448, is the first ɛ2 bacteriophage to be used in vivo. Currently the patient is without evidence of clinical recurrence and, interestingly, the patient had also suffered from debilitating aplastic anemia for over 2 years, which is recovering since receiving adjuvant bacteriophage therapy.
Collapse
Affiliation(s)
- James B. Doub
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: ; Tel.: +1-410-706-3454; Fax: +1-410-328-9106
| | - Vincent Y. Ng
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Eleanor Wilson
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | | | - Benjamin K. Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
| |
Collapse
|
26
|
Lin Y, Quan D, Chang RYK, Chow MYT, Wang Y, Li M, Morales S, Britton WJ, Kutter E, Li J, Chan HK. Synergistic activity of phage PEV20-ciprofloxacin combination powder formulation-A proof-of-principle study in a P. aeruginosa lung infection model. Eur J Pharm Biopharm 2020; 158:166-171. [PMID: 33253892 DOI: 10.1016/j.ejpb.2020.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Combination treatment using bacteriophage and antibiotics is potentially an advanced approach to combatting antimicrobial-resistant bacterial infections. We have recently developed an inhalable powder by co-spray drying Pseudomonas phage PEV20 with ciprofloxacin. The purpose of this study was to assess the in vivo effect of the powder using a neutropenic mouse model of acute lung infection. The synergistic activity of PEV20 and ciprofloxacin was investigated by infecting mice with P. aeruginosa, then administering freshly spray-dried single PEV20 (106 PFU/mg), single ciprofloxacin (0.33 mg/mg) or combined PEV20-ciprofloxacin treatment using a dry powder insufflator. Lung tissues were then harvested for colony counting and flow cytometry analysis at 24 h post-treatment. PEV20 and ciprofloxacin combination powder significantly reduced the bacterial load of clinical P. aeruginosa strain in mouse lungs by 5.9 log10 (p < 0.005). No obvious reduction in the bacterial load was observed when the animals were treated only with PEV20 or ciprofloxacin. Assessment of immunological responses in the lungs showed reduced inflammation associating with the bactericidal effect of the PEV20-ciprofloxacin powder. In conclusion, this study has demonstrated the synergistic potential of using the combination PEV20-ciprofloxacin powder for P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Yu Lin
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Quan
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Yuncheng Wang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mengyu Li
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | - Warwick J Britton
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Wasfi R, Hamed SM, Amer MA, Fahmy LI. Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front Cell Infect Microbiol 2020; 10:414. [PMID: 32923408 PMCID: PMC7456845 DOI: 10.3389/fcimb.2020.00414] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/06/2020] [Indexed: 01/21/2023] Open
Abstract
Proteus mirabilis is a Gram negative bacterium that is a frequent cause of catheter-associated urinary tract infections (CAUTIs). Its ability to cause such infections is mostly related to the formation of biofilms on catheter surfaces. In order to form biofilms, P. mirabilis expresses a number of virulence factors. Such factors may include adhesion proteins, quorum sensing molecules, lipopolysaccharides, efflux pumps, and urease enzyme. A unique feature of P. mirabilis biofilms that build up on catheter surfaces is their crystalline nature owing to their ureolytic biomineralization. This leads to catheter encrustation and blockage and, in most cases, is accompanied by urine retention and ascending UTIs. Bacteria embedded in crystalline biofilms become highly resistant to conventional antimicrobials as well as the immune system. Being refractory to antimicrobial treatment, alternative approaches for eradicating P. mirabilis biofilms have been sought by many studies. The current review focuses on the mechanism by which P. mirabilis biofilms are formed, and a state of the art update on preventing biofilm formation and reduction of mature biofilms. These treatment approaches include natural, and synthetic compounds targeting virulence factors and quorum sensing, beside other strategies that include carrier-mediated diffusion of antimicrobials into biofilm matrix. Bacteriophage therapy has also shown successful results in vitro for combating P. mirabilis biofilms either merely through their lytic effect or by acting as facilitators for antimicrobials diffusion.
Collapse
Affiliation(s)
- Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mai A Amer
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lamiaa Ismail Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
28
|
Yazdi M, Bouzari M, Ghaemi EA, Shahin K. Isolation, Characterization and Genomic Analysis of a Novel Bacteriophage VB_EcoS-Golestan Infecting Multidrug-Resistant Escherichia coli Isolated from Urinary Tract Infection. Sci Rep 2020; 10:7690. [PMID: 32376832 PMCID: PMC7203180 DOI: 10.1038/s41598-020-63048-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli (E. coli) is one of the most common uropathogenic bacteria. The emergence of multi-drug resistance among these bacteria resulted in a worldwide public health problem which requires alternative treatment approaches such as phage therapy. In this study, phage VB_EcoS-Golestan, a member of Siphoviridae family, with high lytic ability against E. coli isolates, was isolated from wastewater. Its burst size was large and about 100 plaque-forming units/infected cell, rapid adsorption time, and high resistance to a broad range of pH and temperatures. Bioinformatics analysis of the genomic sequence suggests that VB_EcoS-Golestan is a new phage closely related to Escherichia phages in the Kagunavirus genus, Guernseyvirinae subfamily of Siphoviridae. The genome size was 44829 bp bp that encodes 78 putative ORFs, no tRNAs, 7 potential promoter sequences and 13 Rho-factor-independent terminators. No lysogenic mediated genes were detected in VB_EcoS-Golestan genome. Overall VB_EcoS-Golestan might be used as a potential treatment approach for controlling E. coli mediated urinary tract infection, however, further studies are essential to ensure its safety.
Collapse
Affiliation(s)
- Mahsa Yazdi
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Majid Bouzari
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441, Isfahan, Iran.
| | - Ezzat Allah Ghaemi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, 4934174515, Gorgan, Iran.
| | - Khashayar Shahin
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441, Isfahan, Iran
| |
Collapse
|
29
|
Abedon ST. Phage-Antibiotic Combination Treatments: Antagonistic Impacts of Antibiotics on the Pharmacodynamics of Phage Therapy? Antibiotics (Basel) 2019; 8:antibiotics8040182. [PMID: 31614449 PMCID: PMC6963693 DOI: 10.3390/antibiotics8040182] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria can evolve resistance to antibiotics. Even without changing genetically, bacteria also can display tolerance to antibiotic treatments. Many antibiotics are also broadly acting, as can result in excessive modifications of body microbiomes. Particularly for antibiotics of last resort or in treating extremely ill patients, antibiotics furthermore can display excessive toxicities. Antibiotics nevertheless remain the standard of care for bacterial infections, and rightly so given their long track records of both antibacterial efficacy and infrequency of severe side effects. Antibiotics do not successfully cure all treated bacterial infections, however, thereby providing a utility to alternative antibacterial approaches. One such approach is the use of bacteriophages, the viruses of bacteria. This nearly 100-year-old bactericidal, anti-infection technology can be effective against antibiotic-resistant or -tolerant bacteria, including bacterial biofilms and persister cells. Ideally phages could be used in combination with standard antibiotics while retaining their anti-bacterial pharmacodynamic activity, this despite antibiotics interfering with aspects of bacterial metabolism that are also required for full phage infection activity. Here I examine the literature of pre-clinical phage-antibiotic combination treatments, with emphasis on antibiotic-susceptible bacterial targets. I review evidence of antibiotic interference with phage infection activity along with its converse: phage antibacterial functioning despite antibiotic presence.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA.
| |
Collapse
|
30
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Gomaa S, Serry F, Abdellatif H, Abbas H. Elimination of multidrug-resistant Proteus mirabilis biofilms using bacteriophages. Arch Virol 2019; 164:2265-2275. [DOI: 10.1007/s00705-019-04305-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
32
|
Shahin K, Bao H, Komijani M, Barazandeh M, Bouzari M, Hedayatkhah A, Zhang L, Zhao H, He T, Pang M, Wang R. Isolation, characterization, and PCR-based molecular identification of a siphoviridae phage infecting Shigella dysenteriae. Microb Pathog 2019; 131:175-180. [DOI: 10.1016/j.micpath.2019.03.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
33
|
Yazdi M, Bouzari M, Ghaemi EA. Genomic analyses of a novel bacteriophage (VB_PmiS-Isfahan) within Siphoviridae family infecting Proteus mirabilis. Genomics 2018; 111:1283-1291. [PMID: 30149052 DOI: 10.1016/j.ygeno.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Proteus mirabilis is one of the most common causes of complicated urinary tract infections (UTI), especially in catheter-associated UTIs. The increased resistance to antibiotics, among P. mirabilis isolates has led us to search for alternative antibacterial agents. In this study, genome of a lytic Proteus phage VB_PmiS-Isfahan, isolated from wastewater, and active against planktonic and biofilms of P. mirabilis, isolated from UTI, was analyzed. Accordingly, the genome was sequenced and its similarity to other phages was assessed by the Mauve and EasyFig softwares. "One Click" was used for phylogenetic tree construction. The complete genome of VB_PmiS-Isfahan was 54,836 bp, dsDNA with a G+C content of 36.09%. Nighty-one open reading frames (ORFs) was deduced, among them, 23 were considered as functional genes, based on the homology to the previously characterized proteins. The BLASTn of VB_PmiS-Isfahan showed low similarity to complete genome of Salmonella phages VB_SenS_Sasha, 9NA, and VB_SenS-Sergei. A comparison of Nucleic acid and amino acid sequence, and phylogenetic analyses indicated that the phage is novel, significantly differs, and is distant from other genera, within Siphoviridae family. No virulence-associated and antibiotic resistance genes were detected. Thus, VB_PmiS-Isfahan phage is suggested as a potential novel candidate for the treatment of diseases, caused by P. mirabilis.
Collapse
Affiliation(s)
- Mahsa Yazdi
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Majid Bouzari
- Department of Biology, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran.
| | - Ezzat Allah Ghaemi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, 4934174515 Gorgan, Iran.
| |
Collapse
|
34
|
Komijani M, Shahin K, Barazandeh M, Sajadi M. Prevalence of Extended-Spectrum β-Lactamases Genes in Clinical Isolates of Pseudomonas aeruginosa. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.5.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|