1
|
Yang L, Hao X, Gao B, Ren C, Du H, Su X, Zhang D, Bao T, Qiao Z, Cao Q. Endothelialization of PTFE-covered stents for aneurysms and arteriovenous fistulas created in canine carotid arteries. Sci Rep 2024; 14:4803. [PMID: 38413764 PMCID: PMC10899654 DOI: 10.1038/s41598-024-55532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
To investigate the endothelialization of covered and bare stents deployed in the canine carotid arteries and subclavian arteries for treating experimental aneurysms and arteriovenous fistulas, twenty aneurysms were created in 10 dogs, and 20 fistulas in another 10 dogs. The Willis balloon-expandable covered stent and a self-expandable covered stent were used to treat these lesions, and a self-expandable bare stent was deployed in the subclavian artery for comparison. Followed up for up to 12 months, the gross observation, pathological staining, and scanning electronic microscopic data were analyzed. Two weeks after creation of animal model, thirty self-expandable covered stents and ten balloon-expandable covered stents were deployed. Fifteen bare stents were deployed within the left subclavian arteries. Twenty days after stenting, the aneurysm significantly shrank. At 6 months, the thrombi within the aneurysm cavity were organized. Three to 12 months later, most covered and bare stents were covered by a thin transparent or white layer of endothelial intima. Layers of intima or pseudomembrane were formed on the stent 20-40 days after stent deployment. Over three months, the pseudomembrane became organized, thinner, and merged into the vascular wall. Under scanning electronic microscopy, the surface of covered and bare stents had only deposition of collagen fibers and rare endothelial cells 20-40 days after stenting. From three to ten months, the endothelial cells on the internal surface of stent became mature, with spindle, stripe-like or quasi round morphology along the blood flow direction. Over time, the endothelial cells became mature. In conclusion, three months after deployment in canines' arteries, the self-expandable bare and covered stents have mostly been covered by endothelial cells which become maturer over time, whereas the balloon-expandable covered stents do not have complete coverage of endothelial cells at three months, especially for protruding stent struts and areas. Over time, the endothelialization will become mature.
Collapse
Affiliation(s)
- Lei Yang
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| | - Xiaohong Hao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Bulang Gao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Chunfeng Ren
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Hong Du
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - XianHui Su
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Dongliang Zhang
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Tong Bao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Zongrong Qiao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Qinying Cao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Hu K, Li Y, Lu C, Guo Y, Wang W. The rodent models of arteriovenous fistula. Front Cardiovasc Med 2024; 11:1293568. [PMID: 38304139 PMCID: PMC10830807 DOI: 10.3389/fcvm.2024.1293568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Arteriovenous fistulas (AVFs) have long been used as dialysis access in patients with end-stage renal disease; however, their maturation and long-term patency still fall short of clinical needs. Rodent models are irreplaceable to facilitate the study of mechanisms and provide reliable insights into clinical problems. The ideal rodent AVF model recapitulates the major features and pathology of human disease as closely as possible, and pre-induction of the uremic milieu is an important addition to AVF failure studies. Herein, we review different surgical methods used so far to create AVF in rodents, including surgical suturing, needle puncture, and the cuff technique. We also summarize commonly used evaluations after AVF placement. The aim was to provide recent advances and ideas for better selection and induction of rodent AVF models. At the same time, further improvements in the models and a deeper understanding of AVF failure mechanisms are expected.
Collapse
Affiliation(s)
- Yuxuan Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Hu
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Li
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chanjun Lu
- Department of General Vascular Surgery, Wuhan No.1 Hospital & Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weici Wang
- Departmentof Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Al-Smadi MW, Fazekas LA, Varga A, Matrai AA, Aslan S, Beqain A, Al-Khafaji MQM, Bedocs-Barath B, Novak L, Nemeth N. Minor micro-rheological alterations in the presence of an artificial saphenous arteriovenous shunt, as an arteriovenous malformation model in the rat. Clin Hemorheol Microcirc 2024; 87:27-37. [PMID: 38250764 DOI: 10.3233/ch-231825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Arteriovenous malformations (AVMs) are vascular anomalies characterized by abnormal shunting between arteries and veins. The progression of the AVMs and their hemodynamic and rheological relations are poorly studied, and there is a lack of a feasible experimental model. OBJECTIVE To establish a model that cause only minimal micro-rheological alterations, compared to other AV models. METHODS Sixteen female Sprague Dawley rats were randomly divided into control and AVM groups. End-to-end anastomoses were created between the saphenous veins and arteries to mimic AVM nidus. Hematological and hemorheological parameters were analyzed before surgery and on the 1st, 3rd, 5th, 7th, 9th, and 12th postoperative weeks. RESULTS Compared to sham-operated Control group the AVM group did not show important alterations in hematological parameters nor in erythrocyte aggregation and deformability. However, slightly increased aggregation and moderately decreased deformability values were found, without significant differences. The changes normalized by the 12th postoperative week. CONCLUSIONS The presented rat model of a small-caliber AVM created on saphenous vessels does not cause significant micro-rheological changes. The alterations found were most likely related to the acute phase reactions and not to the presence of a small-caliber shunt. The model seems to be suitable for further studies of AVM progression.
Collapse
Affiliation(s)
- Mohammad Walid Al-Smadi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kalman Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Attila Matrai
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Siran Aslan
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anas Beqain
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mustafa Qais Muhsin Al-Khafaji
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Bedocs-Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Novak
- Department of Neurosurgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Al-Smadi MW, Fazekas LA, Aslan S, Bernat B, Beqain A, Al-Khafaji MQM, Priksz D, Orlik B, Nemeth N. A Microsurgical Arteriovenous Malformation Model on Saphenous Vessels in the Rat. Biomedicines 2023; 11:2970. [PMID: 38001970 PMCID: PMC10669800 DOI: 10.3390/biomedicines11112970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Arteriovenous malformation (AVM) is an anomaly of blood vessel formation. Numerous models have been established to understand the nature of AVM. These models have limitations in terms of the diameter of the vessels used and the impact on the circulatory system. Our goal was to establish an AVM model that does not cause prompt and significant hemodynamic and cardiac alterations but is feasible for follow-up of the AVM's progression. Sixteen female rats were randomly divided into sham-operated and AVM groups. In the AVM group, the saphenous vein and artery were interconnected using microsurgical techniques. The animals were followed up for 12 weeks. Anastomosis patency and the structural and hemodynamic changes of the heart were monitored. The hearts and vessels were histologically analyzed. During the follow-up period, shunts remained unobstructed. Systolic, diastolic, mean arterial pressure, and heart rate values slightly and non-significantly decreased in the AVM group. Echocardiogram results indicated minor systolic function impact, with slight and insignificant changes in aortic pressure and blood velocity, and minimal left ventricular wall enlargement. The small-caliber saphenous AVM model does not cause acute hemodynamic changes. Moderate but progressive alterations and venous dilatation confirmed AVM-like features. The model seems to be suitable for studying further the progression, enlargement, or destabilization of AVM.
Collapse
Affiliation(s)
- Mohammad Walid Al-Smadi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
- Kalman Laki Doctoral School, University of Debrecen, 4032 Debrecen, Hungary
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Siran Aslan
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Brigitta Bernat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.B.); (D.P.)
| | - Anas Beqain
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Mustafa Qais Muhsin Al-Khafaji
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| | - Daniel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (B.B.); (D.P.)
| | - Brigitta Orlik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, 4032 Debrecen, Hungary; (M.W.A.-S.); (L.A.F.); (S.A.); (A.B.); (M.Q.M.A.-K.)
| |
Collapse
|
5
|
Wu Y, Suo Y, Wang Z, Yu Y, Duan S, Liu H, Qi B, Jian C, Hu X, Zhang D, Yu A, Cheng Z. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front Bioeng Biotechnol 2022; 10:1042546. [PMID: 36329697 PMCID: PMC9623121 DOI: 10.3389/fbioe.2022.1042546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
In microsurgery, it is always difficult to accurately identify the blood supply with ease, such as vascular anastomosis, digit replantation, skin avulsion reconstruction and flap transplantation. Near-infrared window I (NIR-I, 700—900 nm) imaging has many clinical applications, whereas near-infrared window II (NIR-II, 1,000–1700 nm) imaging has emerged as a highly promising novel optical imaging modality and used in a few clinical fields recently, especially its penetration distance and noninvasive characteristics coincide with the needs of microsurgery. Therefore, a portable NIR-II imaging instrument and the Food and Drug Administration (FDA) approved indocyanine green (ICG) were used to improve the operation efficiency in microsurgery of 39 patients in this study. The anastomotic vessels and the salvaged distal limbs were clearly visualized after intravenous injection of ICG. The technique enabled identification of perforator vessels and estimation of perforator areas prior to the flap obtention and made it easier to monitor the prognosis. Overall, this study highlights the use of the portable NIR- II imaging with ICG as an operative evaluation tool can enhance the safety and accuracy of microsurgery.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongkuan Suo
- Joint Laboratory for Molecular Medicine, Institute of Molecular Medicine, Northeastern University, Shenyang, Liaoning, China
| | - Zheng Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Duan
- Joint Laboratory for Molecular Medicine, Institute of Molecular Medicine, Northeastern University, Shenyang, Liaoning, China
| | - Hongguang Liu
- Joint Laboratory for Molecular Medicine, Institute of Molecular Medicine, Northeastern University, Shenyang, Liaoning, China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Jian
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Zhang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Aixi Yu, ; Zhen Cheng,
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
- *Correspondence: Aixi Yu, ; Zhen Cheng,
| |
Collapse
|
6
|
Distress Analysis of Mice with Cervical Arteriovenous Fistulas. Animals (Basel) 2021; 11:ani11113051. [PMID: 34827783 PMCID: PMC8614439 DOI: 10.3390/ani11113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Functional hemodialysis access is essential for the survival of patients with end-stage renal disease. Although various guidelines recommend autologous arteriovenous fistula as the first choice for hemodialysis, it is still the Achilles heel for patients. Several in vivo models have been used to study and improve the mechanisms of vascular remodeling of arteriovenous fistula. However, some models have the disadvantage of having anatomical features or a hemodynamic profile different from that of the arteriovenous fistula in humans. In the presented cervical arteriovenous fistula model, these disadvantages were eliminated. It resembles the human physiology and is an ideal animal model for arteriovenous fistula research. Moreover, in order to understand the impact of this model on animal welfare, the distress of this new animal model was analyzed. Body weight, faecal corticosterone metabolites, burrowing activity, nesting behaviour and distress scores were analysed after fistula creation and during the following three weeks. The physiological, behavioural, and neuroendocrine assessments all indicated that this model causes only moderate distress to the animals. This not only meets the need for animal ethics but also improves the quality of scientific research. Therefore, this cervical model is suitable for arteriovenous fistula research and should be used more frequently in the future. Abstract The welfare of laboratory animals is a consistent concern for researchers. Its evaluation not only fosters ethical responsibility and addresses legal requirements, but also provides a solid basis for a high quality of research. Recently, a new cervical arteriovenous model was created in mice to understand the pathophysiology of arteriovenous fistula, which is the most commonly used access for hemodialysis. This study evaluates the distress caused by this new animal model. Ten male C57B6/J mice with cervical arteriovenous fistula were observed for 21 days. Non-invasive parameters, such as body weight, faecal corticosterone metabolites, burrowing activity, nesting activity and distress scores were evaluated at each time point. Six out of ten created arteriovenous fistula matured within the observation time as defined by an increased diameter. The body weight of all animals was reduced after surgery but recovered within five days. In addition, the distress score was significantly increased during the early time point but not at the late time point after arteriovenous fistula creation. Neither burrowing activity nor nesting behaviour were significantly reduced after surgical intervention. Moreover, faecal corticosterone metabolite concentrations did not significantly increase. Therefore, the cervical murine arteriovenous fistula model induced moderate distress in mice and revealed an appropriate maturation rate of the fistulas.
Collapse
|