1
|
Liu J, Jin B, Lu J, Feng Y, Li N, Wan C, Zhang QY, Jiang CM. Angiotensin II type 2 receptor prevents extracellular matrix accumulation in human peritoneal mesothelial cell by ameliorating lipid disorder via LOX-1 suppression. Ren Fail 2022; 44:1687-1697. [PMID: 36226438 PMCID: PMC9578471 DOI: 10.1080/0886022x.2022.2133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Evidence suggests that intracellular angiotensin II type 1 receptor (AT1) contributes to peritoneal fibrosis (PF) under high glucose (HG)-based dialysates. It is generally believed that AT2 antagonisticly affects AT1 function. The aim of this study was to explore whether AT2 activation is beneficial for attenuating human peritoneal mesothelial cell (HPMC) injury due to HG. We treated a HPMC line with HG to induce extracellular matrix (ECM) formation. AT2 was increased and blocked using CGP42112A and AT2 siRNA. Lipid deposition was detected, signaling molecules associated with lectin-like oxidized lipoprotein receptor-1 (LOX-1) and ECM proteins were evaluated by real-time PCR and western blot. The results showed that HG led to AT2 inhibition in HPMCs, inhibition of AT2 further aggravated the expression of ECM proteins, including α-smooth muscle actin, fibroblast specific protein-1 and collagen I, while AT2 decreased the expression of ECM proteins, even during HG stimulation. Interestingly, there was a parallel change in lipid accumulation and ECM formation when AT2 was increased or depressed. Moreover, AT2-mediated decreased ECM production was associated with reduced lipid accumulation in HPMCs and depended on the downregulation of LOX-1. Further analysis showed that HG increased oxidized low-density lipoprotein (ox-LDL) deposition in HPMCs concomitant with an enhanced expression of ECM components, whereas blocking LOX-1 reversed ox-LDL deposition even in the presence of HG. This effect was also accompanied by the remission of ECM accumulation. Our results suggested that AT2 prevented ECM formation in HG-stimulated HPMCs by ameliorating lipid via LOX‐1 suppression.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bo Jin
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian Lu
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuan Feng
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Nan Li
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Wan
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing-Yan Zhang
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Ming Jiang
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
2
|
Liu J, Feng Y, Li N, Shao QY, Zhang QY, Sun C, Xu PF, Jiang CM. Activation of the RAS contributes to peritoneal fibrosis via dysregulation of low-density lipoprotein receptor. Am J Physiol Renal Physiol 2021; 320:F273-F284. [PMID: 33427062 DOI: 10.1152/ajprenal.00149.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Peritoneal dialysis (PD)-related peritoneal fibrosis (PF) is characterized by progressive extracellular matrix (ECM) accumulation in peritoneal mesothelial cells (PMCs) during long-term use of high glucose (HG)-based dialysates. Activation of the renin-angiotensin system (RAS) has been shown to be associated with PF. The aim of this study was to explore the underlying mechanism of the RAS in HG-induced PF. We treated C57BL/6 mice and a human PMC line with HG to induce a PF model and to stimulate ECM accumulation, respectively. RAS activity was blocked using valsartan or angiotensin II (ANGII) type 1 receptor siRNA. The major findings were as follows. First, mice in the HG group exhibited increased collagen deposition and expression of ECM proteins, including α-smooth muscle actin (α-SMA) and collagen type I in the peritoneum. Consistent with the in vivo data, HG upregulated α-SMA expression in human peritoneal mesothelial cells (HPMCs) in a time- and dose-dependent manner. Second, HG stimulation led to RAS activation in HPMCs, and inactivation of RAS decreased the expression of ECM proteins in vivo and in vitro, even during HG stimulation. Finally, RAS-mediated ECM production was associated with lipid accumulation in HPMCs and depended on the dysregulation of the low-density lipoprotein receptor (LDLr) pathway. HG-stimulated HPMCs showed increased coexpression of LDLr and α-SMA, whereas blockade of RAS activity reversed the effect. Furthermore, inhibition of LDLr signaling decreased α-SMA and collagen type I expression in HPMCs when treated with HG and ANG II. In conclusion, increased intracellular RAS activity impaired lipid homeostasis and induced ECM accumulation in HPMCs by disrupting the LDLr pathway, which contributed to PF.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yuan Feng
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Nan Li
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qiu-Yuan Shao
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qing-Yan Zhang
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Cheng Sun
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng-Fei Xu
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chun-Ming Jiang
- Institute of Nephrology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
3
|
Liu J, Feng Y, Sun C, Zhu W, Zhang QY, Jin B, Shao QY, Xia YY, Xu PF, Zhang M, Jiang CM. Valsartan ameliorates high glucose-induced peritoneal fibrosis by blocking mTORC1 signaling. Exp Biol Med (Maywood) 2020; 245:983-993. [PMID: 32408765 DOI: 10.1177/1535370220919364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT Our study provided new insight into the mechanism underlying the preservation of the peritoneum by valsartan. The results demonstrated that the mice receiving chronic high glucose (HG) peritoneal dialysis solution infusion showed a typical feature of peritoneal fibrosis (PF), as well as higher expression of α-smooth muscle actin (α-SMA) and collagen I. In vitro, HG increased the protein expression of α-SMA and collagen I in a dose-dependent manner, while valsartan significantly ameliorated these pathological changes. Interestingly, there was a parallel decrease in the activity of mammalian target of rapamycin complex 1 (mTORC1) and the protein expression levels of α-SMA and collagen I upon treatment with valsartan in vivo and in vitro. Moreover, the mTOR agonist MHY1485 reversed the downregulation of α-SMA and collagen I in vitro, even in the presence of valsartan. Altogether, our findings reported for the first time that valsartan exerts a protective effect against HG-induced PF by inhibiting the activity of the mTORC1 pathway.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Yuan Feng
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Cheng Sun
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Wei Zhu
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Qing-Yan Zhang
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Bo Jin
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Qiu-Yuan Shao
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Yang-Yang Xia
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Peng-Fei Xu
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Miao Zhang
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| | - Chun-Ming Jiang
- Institute of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing City, Jiangsu Province 210008, China
| |
Collapse
|