1
|
Ali R, Baban R, Ali S. The association between PON1 gene polymorphisms (Q192R and L55M) and nephrotic syndrome in Iraqi children. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2021. [DOI: 10.47419/bjbabs.v2i03.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: The role of paraoxonase 1 enzyme (PON1) and its single nucleotide polymorphisms (SNPs) in children with nephrotic syndrome (NS) has been reported previously in different ethnic and racial groups with divergent results. The human PON1 gene contains two coding region polymorphisms leading to two different PON1 isoforms.
Objectives: The aim of the present study was to find out the association between the PON1 (Q192R and L55M) polymorphisms and their relation with serum PON1 activity as well as lipid profile tests (total cholesterol, TC; triglycerides, TG; high-density lipoprotein cholesterol, HDL-c; and low-density lipoprotein cholesterol, LDL-c) in children with NS.
Methods: This study included a total of 80 participants (40 with NS in the age group of 2-14 years and 40 age and sex-matched healthy controls). The PON1 enzyme activity and lipid profile tests were measured in serum samples of all included participants. The PON1 genotype was determined by PCR-restriction enzyme fragment length polymorphism (PCR-RFLP) for both PON1 alleles (192 and 55) SNPs.
Results: Our findings showed that the mean levels of lipid profile tests (TC, TG, LDL-c) were significantly increased in patients when compared with healthy controls (p<0.05), while the HDL-c concentration was significantly decreased in patients than that of controls. Also, the patients had significantly lower concentrations of PON1 when compared with the controls regardless of the genotype Q192R and L55M polymorphisms. Moreover, the homozygous RR genotype for PON1 SNP 192 and MM homozygous genotype for PON1 SNP 55 were significantly frequent in patients when compared with the controls.
Conclusions: Our results support that the presence of the homozygous RR genotype for PON1 SNP 192 and MM homozygous genotype for PON1 SNP 55 were significantly higher in patients compared with the controls.
Collapse
|
2
|
Ashiq S, Ashiq K. The Role of Paraoxonase 1 (PON1) Gene Polymorphisms in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Biochem Genet 2021; 59:919-939. [PMID: 33599870 DOI: 10.1007/s10528-021-10043-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
Although many studies have investigated the association of paraoxonase 1 (PON1) polymorphisms with coronary artery disease (CAD). However, the outcomes were not consistent and remain uncertain. Therefore, it is the need of the hour to analyze the available literature and evaluate the association of PON1 polymorphisms with the CAD. All the relevant studies published in the English language from January 1, 2000, up to September 20, 2020, were identified by searching through various electronic databases. The two researchers independently extracted the information. The data were analyzed by using the MetaGenyo program. The pooled odds ratio was used to find the associations between CAD and PON1 polymorphisms. In the final analysis, we include 10 studies regarding the association of PON1 polymorphisms (rs662 and rs854560) with CAD. Overall, the Q192R polymorphism increased the risk of CAD in the tested genetic models including the homozygote model: OR 1.35, CI 1.02-1.79; allelic model: OR 1.16, CI 1.00-1.33; dominant model: OR 1.25, CI 1.03-1.52. The L55M polymorphism does not significantly associated with CAD in all the tested genetic models including the homozygote model: OR 1.00 CI, 0.64-1.56; allelic model: OR 1.02, 95% CI 0.84-1.23; dominant model: OR 1.08, CI 0.89-1.31. Further analysis showed no publication bias exists in meta-analysis. Our findings suggested that rs662 in the coding region was significantly associated with the CAD however, rs854560 has no significant association with the disease. Nevertheless, in future, there is a need for more studies with a larger sample size which may provide a more definite conclusion.Study Registration: PROSPERO registration number CRD42020202278.
Collapse
Affiliation(s)
- Sana Ashiq
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan.
| | - Kanwal Ashiq
- Faculty of Pharmaceutical Sciences, Superior University, Lahore, Pakistan
| |
Collapse
|
3
|
Sharma AR, Patagi S, Uk AR, Shetty R, Umakanth S, Satyamoorthy K, Rai PS. MirSNPs in clopidogrel metabolism genes predict cardiovascular disease risk: a case-control study and meta-analysis. Pharmacogenomics 2020; 22:99-113. [PMID: 33356544 DOI: 10.2217/pgs-2020-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study was conducted to decipher the inter-relationship of SNPs and miRNAs involved in pharmacogenomics of clopidogrel on predisposition to cardiovascular diseases (CVDs). Materials & methods: A case-control study was conducted on 410 cases and 386 controls to analyze the association of 13 mirSNPs on CVDs risk. Genotyping was performed by tetra-primer amplification refractory mutation system PCR and validated using Sanger DNA sequencing. miRNA expression analysis was performed using TaqMan assays. A meta-analysis was performed for PON1 rs662 with coronary artery disease. Results & conclusion: PON1 rs662, PON1 rs3917577, CYP3A5 rs15524, COL4A1 rs874204 and PTGIR rs1126510 polymorphisms showed association with CVDs. The miRNA hsa-miR-224-5p showed differential expression in the PON1 rs3917577 GG genotype. The meta-analysis showed the population-specific impact of PON1 rs662 on South Asian and Middle East populations.
Collapse
Affiliation(s)
- Anu Radha Sharma
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sourav Patagi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Abdul Razak Uk
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ranjan Shetty
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. T.M.A. Pai Rotary Hospital, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
5
|
Milaciu MV, Vesa ȘC, Bocșan IC, Ciumărnean L, Sâmpelean D, Negrean V, Pop RM, Matei DM, Pașca S, Răchișan AL, Buzoianu AD, Acalovschi M. Paraoxonase-1 Serum Concentration and PON1 Gene Polymorphisms: Relationship with Non-Alcoholic Fatty Liver Disease. J Clin Med 2019; 8:jcm8122200. [PMID: 31847187 PMCID: PMC6947206 DOI: 10.3390/jcm8122200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is an important cause of chronic liver diseases around the world. Paraoxonase-1 (PON1) is an enzyme produced by the liver with an important antioxidant role. The aim of this study was to evaluate PON1 serum concentration and PON1 gene polymorphisms in patients with NAFLD. Materials and methods: We studied a group of 81 patients with NAFLD with persistently elevated aminotransferases and a control group of 81 patients without liver diseases. We collected clinical information and performed routine blood tests. We also measured the serum concentration of PON1 and evaluated the PON1 gene polymorphisms L55M, Q192R, and C-108T. Results: There was a significant difference (p < 0.001) in serum PON1 concentrations among the two groups. The heterozygous and the mutated homozygous variants (LM + MM) of the L55M polymorphism were more frequent in the NAFLD group (p < 0.001). These genotypes were found in a multivariate binary logistic regression to be independently linked to NAFLD (Odds ratio = 3.4; p = 0.04). In a multivariate linear regression model, the presence of NAFLD was associated with low PON1 concentration (p < 0.001). Conclusions: PON1 serum concentrations were diminished in patients with NAFLD, and the presence of NAFLD was linked with low PON1 concentration. The LM + MM genotypes of the PON1 L55M polymorphism were an independent predictor for NAFLD with persistently elevated aminotransferases.
Collapse
Affiliation(s)
- Mircea Vasile Milaciu
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Ștefan Cristian Vesa
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Ioana Corina Bocșan
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Lorena Ciumărnean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
- Correspondence:
| | - Dorel Sâmpelean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Vasile Negrean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (M.V.M.); (D.S.); (V.N.)
| | - Raluca Maria Pop
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Daniela Maria Matei
- Department 5—Internal Medicine, 3rd Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Sergiu Pașca
- Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Andreea Liana Răchișan
- Department of Pediatrics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania;
| | - Anca Dana Buzoianu
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (Ș.C.V.); (I.C.B.); (R.M.P.); (A.D.B.)
| | - Monica Acalovschi
- Doctoral School, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|