1
|
Hernández-Vega AM, Llorente I, Sánchez-Hernández R, Segura Y, Tusié-Luna T, Morales-Buenrostro LE, García-Villegas R, Islas LD, Rosenbaum T. Identification and Properties of TRPV4 Mutant Channels Present in Polycystic Kidney Disease Patients. FUNCTION 2024; 5:zqae031. [PMID: 38984987 PMCID: PMC11384909 DOI: 10.1093/function/zqae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Polycystic kidney disease (PKD), a disease characterized by the enlargement of the kidney through cystic growth is the fourth leading cause of end-stage kidney disease world-wide. Transient receptor potential Vanilloid 4 (TRPV4), a calcium-permeable TRP, channel participates in kidney cell physiology and since TRPV4 forms complexes with another channel whose malfunction is associated to PKD, TRPP2 (or PKD2), we sought to determine whether patients with PKD, exhibit previously unknown mutations in TRPV4. Here, we report the presence of mutations in the TRPV4 gene in patients diagnosed with PKD and determine that they produce gain-of-function (GOF). Mutations in the sequence of the TRPV4 gene have been associated to a broad spectrum of neuropathies and skeletal dysplasias but not PKD, and their biophysical effects on channel function have not been elucidated. We identified and examined the functional behavior of a novel E6K mutant and of the previously known S94L and A217S mutant TRVP4 channels. The A217S mutation has been associated to mixed neuropathy and/or skeletal dysplasia phenotypes, however, the PKD carriers of these variants had not been diagnosed with these reported clinical manifestations. The presence of certain mutations in TRPV4 may influence the progression and severity of PKD through GOF mechanisms. PKD patients carrying TRVP4 mutations are putatively more likely to require dialysis or renal transplant as compared to those without these mutations.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yayoi Segura
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis E Morales-Buenrostro
- Departmento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina. Universidad Nacional Autónoma de México,Ciudad de México 04510, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Legare JM, Basel D. What the pediatric endocrinologist needs to know about skeletal dysplasia, a primer. Front Pediatr 2023; 11:1229666. [PMID: 37675393 PMCID: PMC10477785 DOI: 10.3389/fped.2023.1229666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Children with skeletal dysplasia are frequently referred to pediatric endocrinologists due to short stature. These children may present with disproportionate growth or medical histories that point to a skeletal dysplasia. This primer will discuss when to be concerned about skeletal dysplasia, the initial steps in evaluation for a skeletal dysplasia, and new therapies that are either recently approved or in development.
Collapse
Affiliation(s)
- Janet M. Legare
- Department of Pediatrics, University of Wisconsin School of Medicineand Public Health, Madison, WI, United States
| | - Donald Basel
- Department of Pediatrics, Medical Collegeof Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Lv S, Zhao J, Liu L, Wang C, Yue H, Zhang H, Li S, Zhang Z. Exploring and expanding the phenotype and genotype diversity in seven Chinese families with spondylo-epi-metaphyseal dysplasia. Front Genet 2022; 13:960504. [PMID: 36118854 PMCID: PMC9473317 DOI: 10.3389/fgene.2022.960504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Spondylo-epi-metaphyseal dysplasia (SEMD) is a heterogeneous group of disorders with different modes of inheritance and is characterized by disproportionate or proportionate short stature. To date, more than 30 disease-causing genes have been identified, and different types of SEMD exhibit greatly overlapping clinical features, which usually complicate the diagnosis. This study was performed to expand the clinical and molecular spectrum of SEMD among Chinese subjects and to explore their potential phenotype–genotype relations. We enrolled seven families including 11 affected patients with SEMD, and their clinical, radiographic, and genetic data were carefully analyzed. All the seven probands showed different degrees of short stature, and each of them exhibited additional specific skeletal manifestations; four probands had extraosseous manifestations. X-rays of the seven probands showed common features of SEMD, including vertebral deformities, irregular shape of the epiphysis, and disorganization of the metaphysis. Seven variants were identified in TRPV4 (c.694C> T, p.Arg232Cys), COL2A1 (c.654 + 1G > C; c.3266_3268del, p.Gly1089del), CCN6 (c.396 T> G, p.Cys132Trp; c.721 T>C, p.Cys241Arg), SBDS (c.258 + 2T> C), and ACAN (c.1508C> A, p.Thr503Lys) genes, and two of them were novel. Two families with TRPV4 variants showed considerable intrafamily and interfamily heterogeneities. In addition, we reported one case of SEMD with a severe phenotype caused by ACAN gene mutation. Our study expands the phenotype and genetic spectrum of SEMD and provides evidence for the phenotype–genotype relations, aiding future molecular and clinical diagnosis as well as procreative management of SEMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shanshan Li
- *Correspondence: Shanshan Li, ; Zhenlin Zhang,
| | | |
Collapse
|
4
|
Taga A, Peyton MA, Goretzki B, Gallagher TQ, Ritter A, Harper A, Crawford TO, Hellmich UA, Sumner CJ, McCray BA. TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol 2022; 9:375-391. [PMID: 35170874 PMCID: PMC8935273 DOI: 10.1002/acn3.51523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Distinct dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) typically cause nonoverlapping diseases of either the neuromuscular or skeletal systems. However, accumulating evidence suggests that some patients develop mixed phenotypes that include elements of both neuromuscular and skeletal disease. We sought to define the genetic and clinical features of these patients. METHODS We report a 2-year-old with a novel R616G mutation in TRPV4 with a severe neuropathy phenotype and bilateral vocal cord paralysis. Interestingly, a different substitution at the same residue, R616Q, has been reported in families with isolated skeletal dysplasia. To gain insight into clinical features and potential genetic determinants of mixed phenotypes, we perform in-depth analysis of previously reported patients along with functional and structural assessment of selected mutations. RESULTS We describe a wide range of neuromuscular and skeletal manifestations and highlight specific mutations that are more frequently associated with overlap syndromes. We find that mutations causing severe, mixed phenotypes have an earlier age of onset and result in more marked elevations of intracellular calcium, increased cytotoxicity, and reduced sensitivity to TRPV4 antagonism. Structural analysis of the two mutations with the most dramatic gain of ion channel function suggests that these mutants likely cause constitutive channel opening through disruption of the TRPV4 S5 transmembrane domain. INTERPRETATION These findings demonstrate that the degree of baseline calcium elevation correlates with development of mixed phenotypes and sensitivity to pharmacologic channel inhibition, observations that will be critical for the design of future clinical trials for TRPV4 channelopathies.
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Margo A Peyton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, 60438, Germany
| | - Thomas Q Gallagher
- Departments of Otolaryngology - Head & Neck Surgery & Pediatrics, Eastern Virginia Medical School, and Department of Pediatric Otolaryngology, Children's Hospital of the King's Daughters, Norfolk, Virginia, 23508, USA
| | - Ann Ritter
- Department of Neurosurgery, Virginia Commonwealth University Health System, Richmond, Virginia, 23298, USA
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University Health System, Richmond, Virginia, 23298, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, 60438, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
5
|
Jack CF, Birkemeier KL, Santiago JM, Macmurdo CF, Crisp MB. Magnetic resonance imaging diagnosis of a skeletal dysplasia mimicking erosive arthropathy. Pediatr Radiol 2021; 51:1758-1761. [PMID: 33710406 DOI: 10.1007/s00247-021-05027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/07/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
This case report of a 14-year-old boy with arthralgia and clinically suspected inflammatory arthropathy highlights how magnetic resonance imaging (MRI) ultimately diagnosed skeletal dysplasia. A genetic evaluation revealed a transient receptor potential vanilloid 4 (TRPV4) pathogenic variant. This is a rare description of the MRI appearance of this type of dysplasia in long bone epiphyses corresponding with the histological findings of disrupted endochondral ossification. This report offers imaging support to the description of endochondral bone growth disruption in TRPV4-related skeletal dysplasias.
Collapse
Affiliation(s)
- Christina F Jack
- Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Krista L Birkemeier
- Department of Radiology, Baylor Scott & White McLane Children's Medical Center, Texas A&M University Health Sciences, 2401 S. 31st St., MS-01-W256, Temple, TX, USA.
| | - Jose M Santiago
- Department of Radiology, Scott & White Medical Center, Temple, TX, USA
| | - Colleen F Macmurdo
- Division of Medical Genetics, Department of Internal Medicine, Scott & White Medical Center, Temple, TX, USA
| | - Matthew B Crisp
- Department of Radiology, Scott & White Medical Center, Temple, TX, USA
| |
Collapse
|
6
|
Ürel-Demir G, Şimşek-Kiper PÖ, Öncel İ, Utine GE, Haliloğlu G, Boduroğlu K. Natural history of TRPV4-Related disorders: From skeletal dysplasia to neuromuscular phenotype. Eur J Paediatr Neurol 2021; 32:46-55. [PMID: 33774370 DOI: 10.1016/j.ejpn.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
TRPV4-related disorders constitute a broad spectrum of clinical phenotypes including several genetic skeletal and neuromuscular disorders, in which clinical variability and somewhat overlapping features are present. These disorders have previously been considered to be clinically distinct phenotypes before their molecular basis was discovered. However, with the identification of TRPV4 variants in the etiology, they are referred as TRPV4-related disorders (TRPV4-pathies), and are now mainly grouped into skeletal dysplasias and neuromuscular disorders. The skeletal dysplasia group includes metatropic dysplasia, parastremmatic dysplasia, spondyloepiphyseal dysplasia Maroteaux type, spondylometaphyseal dysplasia Kozlowski type, autosomal dominant brachyolmia, and familial digital arthropathy-brachydactyly, whereas the neuromuscular group includes congenital distal spinal muscular atrophy (SMA), scapuloperoneal SMA and Charcot-Marie-Tooth neuropathy type 2C with common manifestations of peripheral neuropathy, joint contractures, and respiratory system involvement. Apart from familial digital arthropathy-brachydactyly, skeletal dysplasia associated with TRPV4 pathogenic variants share some clinical features such as short stature with short trunk, spinal and pelvic changes with varying degrees of long bone involvement. Of note, there is considerable phenotypic overlap within and between both groups. Herein, we report on the clinical and molecular spectrum of 11 patients from six different families diagnosed with TRPV4-related disorders. This study yet represents the largest cohort of patients with TRPV4 variants from a single center in Turkey.
Collapse
Affiliation(s)
- Gizem Ürel-Demir
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Pelin Özlem Şimşek-Kiper
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İbrahim Öncel
- Department of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen Eda Utine
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Göknur Haliloğlu
- Department of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroğlu
- Department of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Sun X, Kato H, Sato H, Torio M, Han X, Zhang Y, Hirofuji Y, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K. Impaired neurite development and mitochondrial dysfunction associated with calcium accumulation in dopaminergic neurons differentiated from the dental pulp stem cells of a patient with metatropic dysplasia. Biochem Biophys Rep 2021; 26:100968. [PMID: 33748438 PMCID: PMC7960789 DOI: 10.1016/j.bbrep.2021.100968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid member 4 (TRPV4) is a Ca2+ permeable nonselective cation channel, and mutations in the TRPV4 gene cause congenital skeletal dysplasias and peripheral neuropathies. Although TRPV4 is widely expressed in the brain, few studies have assessed the pathogenesis of TRPV4 mutations in the brain. We aimed to elucidate the pathological associations between a specific TRPV4 mutation and neurodevelopmental defects using dopaminergic neurons (DNs) differentiated from dental pulp stem cells (DPSCs). DPSCs were isolated from a patient with metatropic dysplasia and multiple neuropsychiatric symptoms caused by a gain-of-function TRPV4 mutation, c.1855C>T (p.L619F). The mutation was corrected by CRISPR/Cas9 to obtain isogenic control DPSCs. Mutant DPSCs differentiated into DNs without undergoing apoptosis; however, neurite development was significantly impaired in mutant vs. control DNs. Mutant DNs also showed accumulation of mitochondrial Ca2+ and reactive oxygen species, low adenosine triphosphate levels despite a high mitochondrial membrane potential, and lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial content. These results suggested that the persistent Ca2+ entry through the constitutively activated TRPV4 might perturb the adaptive coordination of multiple mitochondrial functions, including oxidative phosphorylation, redox control, and biogenesis, required for dopaminergic circuit development in the brain. Thus, certain mutations in TRPV4 that are associated with skeletal dysplasia might have pathogenic effects on brain development, and mitochondria might be a potential therapeutic target to alleviate the neuropsychiatric symptoms of TRPV4-related diseases.
Collapse
Key Words
- ATP, adenosine triphosphate
- DN, dopaminergic neuron
- DPSC, dental pulp stem cell
- Dental pulp stem cells
- Dopaminergic neuron
- MD, metatropic dysplasia
- MPP, mitochondrial membrane potential
- Metatropic dysplasia
- Mitochondria
- NURR1, nuclear receptor related 1
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
- ROS, reactive oxygen species
- RPL13A, 60S ribosomal protein L13a
- Reactive oxygen species
- SOD, superoxide dismutase
- TRPV4, transient receptor potential vanilloid member 4
- Transient receptor potential vanilloid 4
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Michiko Torio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
8
|
Neuropathy-causing TRPV4 mutations disrupt TRPV4-RhoA interactions and impair neurite extension. Nat Commun 2021; 12:1444. [PMID: 33664271 PMCID: PMC7933254 DOI: 10.1038/s41467-021-21699-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
TRPV4 is a cell surface-expressed calcium-permeable cation channel that mediates cell-specific effects on cellular morphology and function. Dominant missense mutations of TRPV4 cause distinct, tissue-specific diseases, but the pathogenic mechanisms are unknown. Mutations causing peripheral neuropathy localize to the intracellular N-terminal domain whereas skeletal dysplasia mutations are in multiple domains. Using an unbiased screen, we identified the cytoskeletal remodeling GTPase RhoA as a TRPV4 interactor. TRPV4-RhoA binding occurs via the TRPV4 N-terminal domain, resulting in suppression of TRPV4 channel activity, inhibition of RhoA activation, and extension of neurites in vitro. Neuropathy but not skeletal dysplasia mutations disrupt TRPV4-RhoA binding and cytoskeletal outgrowth. However, inhibition of RhoA restores neurite length in vitro and in a fly model of TRPV4 neuropathy. Together these results identify RhoA as a critical mediator of TRPV4-induced cell structure changes and suggest that disruption of TRPV4-RhoA binding may contribute to tissue-specific toxicity of TRPV4 neuropathy mutations. TRPV4 dominant mutations cause neuropathy. Here, the authors show that TRPV4 binds and interacts with RhoA, modulating the actin cytoskeleton. Neuropathy-causing mutations of TRPV4 disrupt this complex, leading to RhoA activation and impairment of neurite extension in cultured cells and flies.
Collapse
|
9
|
Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics 2021; 13:pharmaceutics13030334. [PMID: 33806707 PMCID: PMC7999963 DOI: 10.3390/pharmaceutics13030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.
Collapse
|
10
|
Liu Y, Yan X, Chen Y, He Z, Ouyang Y. Novel TRPV4 mutation in a large Chinese family with congenital distal spinal muscular atrophy, skeletal dysplasia and scaly skin. J Neurol Sci 2020; 419:117153. [DOI: 10.1016/j.jns.2020.117153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
|