3
|
Amini J, Beyer C, Zendedel A, Sanadgol N. MAPK Is a Mutual Pathway Targeted by Anxiety-Related miRNAs, and E2F5 Is a Putative Target for Anxiolytic miRNAs. Biomolecules 2023; 13:biom13030544. [PMID: 36979479 PMCID: PMC10046777 DOI: 10.3390/biom13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Anxiety-related disorders (ARDs) are chronic neuropsychological diseases and the sixth leading cause of disability in the world. As dysregulation of microRNAs (miRs) are observed in the pathological course of neuropsychiatric disorders, the present study aimed to introduce miRs that underlie anxiety processing in the brain. First, we collected the experimentally confirmed anxiety-related miRNAs (ARmiRs), predicted their target transcripts, and introduced critical cellular pathways with key commune hub genes. As a result, we have found nine anxiolytic and ten anxiogenic ARmiRs. The anxiolytic miRs frequently target the mRNA of Acyl-CoA synthetase long-chain family member 4 (Acsl4), AFF4-AF4/FMR2 family member 4 (Aff4), and Krüppel like transcription factor 4 (Klf4) genes, where miR-34b-5p and miR-34c-5p interact with all of them. Moreover, the anxiogenic miRs frequently target the mRNA of nine genes; among them, only two miR (miR-142-5p and miR-218-5p) have no interaction with the mRNA of trinucleotide repeat-containing adaptor 6B (Tnrc6b), and miR-124-3p interacts with all of them where MAPK is the main signaling pathway affected by both anxiolytic and anxiogenic miR. In addition, the anxiolytic miR commonly target E2F transcription factor 5 (E2F5) in the TGF-β signaling pathway, and the anxiogenic miR commonly target Ataxin 1 (Atxn1), WASP-like actin nucleation promoting factor (Wasl), and Solute Carrier Family 17 Member 6 (Slc17a6) genes in the notch signaling, adherence junction, and synaptic vesicle cycle pathways, respectively. Taken together, we conclude that the most important anxiolytic (miR-34c, Let-7d, and miR-17) and anxiogenic (miR-19b, miR-92a, and 218) miR, as hub epigenetic modulators, potentially influence the pathophysiology of anxiety, primarily via interaction with the MAPK signaling pathway. Moreover, the role of E2F5 as a novel putative target for anxiolytic miRNAs in ARDs disorders deserves further exploration.
Collapse
Affiliation(s)
- Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
4
|
van der Knoop MM, Maroofian R, Fukata Y, van Ierland Y, Karimiani EG, Lehesjoki AE, Muona M, Paetau A, Miyazaki Y, Hirano Y, Selim L, de França M, Fock RA, Beetz C, Ruivenkamp CAL, Eaton AJ, Morneau-Jacob FD, Sagi-Dain L, Shemer-Meiri L, Peleg A, Haddad-Halloun J, Kamphuis DJ, Peeters-Scholte CMPCD, Kurul SH, Horvath R, Lochmüller H, Murphy D, Waldmüller S, Spranger S, Overberg D, Muir AM, Rad A, Vona B, Abdulwahad F, Maddirevula S, Povolotskaya IS, Voinova VY, Gowda VK, Srinivasan VM, Alkuraya FS, Mefford HC, Alfadhel M, Haack TB, Striano P, Severino M, Fukata M, Hilhorst-Hofstee Y, Houlden H. Biallelic ADAM22 pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy. Brain 2022; 145:2301-2312. [PMID: 35373813 PMCID: PMC9337806 DOI: 10.1093/brain/awac116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.
Collapse
Affiliation(s)
- Marieke M van der Knoop
- Department of Child Neurology, Sophia Children’s Hospital, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yvette van Ierland
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Razavi International Hospital, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George’s University, London SW17 0RE, UK
| | - Anna Elina Lehesjoki
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Mikko Muona
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Finland,00100 Helsinki, Finland
- Blueprint Genetics, 02150 Espoo, Finland
| | - Anders Paetau
- Department of Pathology, Medicum, University of Helsinki, 00100 Helsinki, Finland
| | - Yuri Miyazaki
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yoko Hirano
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-8655, Japan
| | - Laila Selim
- Division of Neurology and Metabolism, Kasr Al Ainy School of Medicine, Cairo University Children Hospital, Cairo, Egypt
| | - Marina de França
- Department of Morphology and Genetics, Clinical Center of Medical Genetics Federal, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Ambrosio Fock
- Department of Morphology and Genetics, Clinical Center of Medical Genetics Federal, University of São Paulo, São Paulo, Brazil
| | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Alison J Eaton
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | | - Lena Sagi-Dain
- Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Genetics Institute, Carmel Medical Center,Haifa, Israel
| | | | - Amir Peleg
- Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Genetics Institute, Carmel Medical Center,Haifa, Israel
| | - Jumana Haddad-Halloun
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Daan J Kamphuis
- Department of Neurology, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | | | - Semra Hiz Kurul
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Hanns Lochmüller
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Stephan Waldmüller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | | | - David Overberg
- Department of Pediatrics, Klinikum Bremen-Mitte, Bremen 28205, Germany
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA 98195, USA
| | - Aboulfazl Rad
- Department of Otolaryngology - Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Barbara Vona
- Department of Otolaryngology - Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Firdous Abdulwahad
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Victoria Y Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
- Mental Health Research Center, Moscow 107076, Russia
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA 98195, USA
| | - Majid Alfadhel
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yvonne Hilhorst-Hofstee
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
5
|
Mo A, Snyder LG, Babington O, Chung WK, Sahin M, Srivastava S. Neurodevelopmental profile of HIVEP2-related disorder. Dev Med Child Neurol 2022; 64:654-661. [PMID: 34704275 PMCID: PMC8986546 DOI: 10.1111/dmcn.15100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
AIM To characterize the neurodevelopmental profile and systemic features of HIVEP2-related disorder. METHOD This study used retrospective medical history and standardized assessment data from Simons Searchlight to describe the clinical characteristics of 12 individuals (eight males, four females; age range 3y 3mo-12y 8mo; mean age [SD] 7y 7mo [2y 11mo]) with pathogenic HIVEP2 variants, focusing on their levels of adaptive functioning, autism symptomology, and emotional and behavioral characteristics. RESULTS Common features included neonatal complications, hypotonia, developmental delay, intellectual disability, language impairment, gastroesophageal reflux, and strabismus. A minority of individuals had epilepsy, microcephaly, or a movement disorder. Based on the Vineland Adaptive Behavior Scales, Second Edition, affected individuals showed impairments in adaptive behavior (mean composite standard score [SD] 56.4 [10.2]; n=8). The cohort also had significant impairments in social problems, as measured by the Social Responsiveness Scale, Second Edition (mean total score [SD] 76.4 [11.3]; n=10) and clinically significant emotional and behavioral difficulties, as measured by the Child Behavior Checklist for ages 6-18 (mean total T score [SD] 66.9 [8.2]; n=8). INTERPRETATION These results show that individuals with HIVEP2-related disorder have impairments in adaptive and social-related behaviors as well as difficulties in emotional and behavioral symptoms.
Collapse
Affiliation(s)
- Alisa Mo
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Wendy K Chung
- Simons Foundation, New York, NY, USA.,Columbia University, New York, NY, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
6
|
Zhou L, Su S, Yu J, Wan S, Xu X, Li X, Xiong M, Tian W, Wang L, Wu Y, Ke C. Schnurri-2 promotes the expression of excitatory glutamate receptors and contributes to neuropathic pain. Neuroscience 2022; 488:20-31. [PMID: 35218885 DOI: 10.1016/j.neuroscience.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Neuropathic pain is a type of chronic pain with complex mechanisms, and current treatments have shown limited success in treating patients suffering from chronic pain. Accumulating evidence has shown that the pathogenesis of neuropathic pain is mediated by the plasticity of excitatory neurons in the dorsal horn of the spinal cord, which provides insights into the treatment of hyperalgesia. In this study, we found that Schnurri-2 (Shn2) was significantly upregulated in the L4-L6 segments of the spinal cord of C57 mice with spared nerve injury, which was accompanied by an increase in GluN2D subunit and glutamate receptor subunit 1 (GluR1) levels. Knocking down the expression of Shn2 using a lentivirus in the spinal cord decreased the GluN2D subunit and GluR1 levels in spared nerve injury mice and eventually alleviated mechanical allodynia. In summary, Shn2 regulates neuropathic pain, promotes the upregulation of GluN2D in glutamatergic neurons and increases the accumulation of GluR1 in excitatory neurons. Taken together, our study provides a new underlying mechanism for the development of neuropathic pain.
Collapse
Affiliation(s)
- Lingyu Zhou
- Jinzhou Medical University, Jinzhou 121001, China; Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Shanchun Su
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jiaqi Yu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Shengjun Wan
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaohui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Mengyuan Xiong
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wei Tian
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Linhan Wang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|