1
|
Li H, Ren Y, Wang L, Li Y. The association of plasma connective tissue growth factor levels with left ventricular diastolic dysfunction in patients with overt hyperthyroidism. Front Endocrinol (Lausanne) 2024; 15:1333001. [PMID: 38375196 PMCID: PMC10874995 DOI: 10.3389/fendo.2024.1333001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Background Left ventricular (LV) diastolic dysfunction is an independent predictor of future cardiovascular events. Early detection of patients with LV diastolic dysfunction can improve clinical outcomes through active management. However, the assessment of diastolic function is very complicated, and there are currently lack of effective biomarkers to assess the risk of LV diastolic dysfunction. Connective tissue growth factor (CTGF) plays a significant role in cardiac remodeling and dysfunction. We aimed to investigate the associations between plasma CTGF level and the risk of LV diastolic dysfunction in this study and judge its effectiveness in diagnosing LV diastolic dysfunction. Methods A total of 169 patients with overt hyperthyroidism were included. LV diastolic function was evaluated and the subjects were divided into normal LV diastolic function group and LV diastolic dysfunction group. Routine clinical medical data, biochemical data, thyroid related parameters and echocardiographic parameters were recorded for analysis. Results Compared with normal LV diastolic function group, the LV diastolic dysfunction group had higher age and BMI, as well as lower heart rate, lower serum albumin, lower eGFR, higher serum TgAb and BNP level, and the incidences of hypertension were also higher (all P <0.05). Circulating plasma CTGF levels in the LV diastolic dysfunction group were significantly higher (normal LV diastolic function group: 7.026 [5.567-8.895], LV diastolic dysfunction group: 8.290 [7.054-9.225] ng/ml, median [(Interquartile range)], P = 0.004); Compared with the lowest quartile group, the crude odds ratios (OR) of LV diastolic dysfunction in the second, third, and fourth quartile group were 3.207, 5.032 and 4.554, respectively (all P<0.05). After adjustment for the potentially confounding variables, the adjusted OR values of the third and fourth quartile group had no obvious change. The results of ROC showed that the plasma CTGF had the largest area under the ROC curve, and the value was 0.659 (P = 0.005). Conclusion The level of circulating plasma CTGF in the LV diastolic dysfunction group was significantly increased. Plasma CTGF level is an independent risk factor for LV diastolic dysfunction. Compared with serum BNP level, the plasma CTGF level may have auxiliary diagnostic value for LV diastolic dysfunction in hyperthyroid patients.
Collapse
Affiliation(s)
- Huan Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yahui Ren
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linfang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuming Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
2
|
Qian J, Wan W, Fan M. HMOX1 silencing prevents doxorubicin-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis by downregulating CTGF. Gen Thorac Cardiovasc Surg 2022; 71:280-290. [PMID: 36008747 DOI: 10.1007/s11748-022-01867-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Doxorubicin is a type of effective antitumor drug but can contribute to cardiomyocyte injuries. We aimed to dissect the mechanism of the HMOX1/CTGF axis in DOX-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis. METHODS Bioinformatics analysis was conducted to retrieve differentially expressed genes in a DOX-induced mouse model. Mouse cardiomyocytes, HL-1 cells, were induced with l µM DOX, after which gain- or loss-of-function assays were applied. CCK-8, fluorescent probe assay, flow cytometry, and corresponding kits were employed to detect cell viability, ROS levels, mitochondrial membrane potential and cell apoptosis, and GSH and Fe2+ contents, respectively. qRT-PCR or Western blot assay was adopted to test HMOX1, CTGF, BCL-2, Caspase3, Cleaved-Caspase3, and GPX4 expression. RESULTS Bioinformatics analysis showed that HMOX1 and CTGF were highly expressed in DOX-induced mice and correlated with each other. Also, HMOX1 and CTGF expression was high in HL-1 cells after DOX treatment, along with an obvious decrease in cell viability and GSH and GPX4 expression, an increase in ROS levels, apoptosis, and Fe2+ contents, and mitochondrial membrane potential dysfunction or loss. HMOX1 or CTGF silencing diminished cell apoptosis, Cleaved-Caspase3 expression, Fe2+ contents, and ROS levels, enhanced cell viability and the expression of GSH, GPX4, and BCL-2, and recovered mitochondrial membrane potential in DOX-induced HL-1 cells. Nevertheless, the effects of HMOX1 silencing on the viability, apoptosis, ferroptosis, and mitochondrial dysfunction of DOX-induced HL-1 cells were counteracted by CTGF overexpression. CONCLUSIONS In conclusion, HMOX1 silencing decreased CTGF expression to alleviate DOX-induced injury, mitochondrial dysfunction, and ferroptosis of mouse cardiomyocytes.
Collapse
Affiliation(s)
- Jia Qian
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Wenting Wan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Min Fan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China.
| |
Collapse
|
3
|
Ku CW, Day CH, Ou HC, Ho TJ, Chen RJ, Kumar VB, Lin WY, Huang CY. The molecular mechanisms underlying arecoline-induced cardiac fibrosis in rats. Open Life Sci 2021; 16:1182-1192. [PMID: 34761109 PMCID: PMC8565594 DOI: 10.1515/biol-2021-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
The areca nut is one of the most commonly consumed psychoactive substances worldwide, with an estimated consumption by approximately 10% of the world’s population, especially in some regions of South Asia, East Africa, and the tropical Pacific. Arecoline, the major areca nut alkaloid, has been classified as carcinogenic to humans as it adversely affects various organs, including the brain, heart, lungs, gastrointestinal tract, and reproductive organs. Earlier studies have established a link between areca nut chewing and cardiac arrhythmias, and yet research pertaining to the mechanisms underlying cardiotoxicity caused by arecoline is still preliminary. The main purpose of this study is to test the hypothesis that arecoline causes cardiac fibrosis through transforming growth factor-β (TGF-β)/Smad-mediated signaling pathways. Male Wistar rats were injected intraperitoneally with low (5 mg/kg/day) or high (50 mg/kg/day) doses of arecoline for 3 weeks. Results from Masson’s trichrome staining indicated that arecoline could induce cardiac fibrosis through collagen accumulation. Western blot analysis showed that TGF-β and p-Smad2/3 protein expression levels were markedly higher in the arecoline-injected rat hearts than in those of the control rats. Moreover, arecoline upregulated other fibrotic-related proteins, including SP1-mediated connective tissue growth factor expression. Tissue-type plasminogen activator and its inhibitor, plasminogen activator inhibitor, and matrix metalloproteinase (MMP) 9 were upregulated, and the inhibitor of MMP9 was downregulated. This study provides novel insight into the molecular mechanisms underlying arecoline-induced cardiac fibrosis. Taken together, the areca nut is a harmful substance, and the detrimental effects of arecoline on the heart are similar to that caused by oral submucous fibrosis.
Collapse
Affiliation(s)
- Chang-Wen Ku
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Wen-Yuan Lin
- The Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Center of General Education, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
4
|
Li H, Zeng RL, Liao YF, Fu MF, Zhang H, Wang LF, Li YM. Association of Plasma Connective Tissue Growth Factor Levels with Hyperthyroid Heart Disease. Curr Med Sci 2021; 41:348-355. [PMID: 33877553 DOI: 10.1007/s11596-021-2354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Hyperthyroid heart disease (HHD) is one of the most severe complications of overt hyperthyroidism and increases the risk of mortality in affected patients. Early identification of patients at a higher risk of developing HHD can improve clinical outcomes through active surveillance and management. Connective tissue growth factor (CTGF), a secreted extracellular protein, plays a significant role in cardiac remodeling and dysfunction. We aimed to investigate the association between plasma CTGF level and the risk of HHD in this study. A total of 142 overt hyperthyroid patients without HHD and 99 patients with HHD were included. The plasma CTGF levels were measured using ELISA kits. Routine clinical medical data and echocardiography parameters were recorded for analysis. The plasma CTGF level was significantly higher in patients with HHD than in those without HHD (P=0.002). The plasma CTGF level was positively correlated with free triiodothyronin, tryrotropin receptor antibody, troponin I and lactate dehydrogenase levels and the left atrium diameters, right atrium diameters, and right ventricular end-diastolic diameters (all P<0.05). Logistic regression analysis showed that quartiles 3 and 4 of plasma CTGF levels were significantly associated with the increased risk of HHD (crude OR: 2.529; 95% CI: 1.188-5.387). However, after adjustment for the potentially confounding variables, quartile 4 alone was significantly associated with the higher risk of HHD relative to quartile 1. Hyperthyroid patients with HHD display higher plasma CTGF levels. Furthermore, CTGF is an independent risk factor for HHD. Therefore, the plasma CTGF level may be a potential biomarker for the risk of HHD.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Ren-Li Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Meng-Fei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Huan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China
| | - Lin-Fang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu-Ming Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, 430022, China.
| |
Collapse
|
5
|
Henkens MTHM, Remmelzwaal S, Robinson EL, van Ballegooijen AJ, Barandiarán Aizpurua A, Verdonschot JAJ, Raafs AG, Weerts J, Hazebroek MR, Sanders-van Wijk S, Handoko ML, den Ruijter HM, Lam CSP, de Boer RA, Paulus WJ, van Empel VPM, Vos R, Brunner-La Rocca HP, Beulens JWJ, Heymans SRB. Risk of bias in studies investigating novel diagnostic biomarkers for heart failure with preserved ejection fraction. A systematic review. Eur J Heart Fail 2020; 22:1586-1597. [PMID: 32592317 PMCID: PMC7689920 DOI: 10.1002/ejhf.1944] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022] Open
Abstract
Aim Diagnosing heart failure with preserved ejection fraction (HFpEF) in the non‐acute setting remains challenging. Natriuretic peptides have limited value for this purpose, and a multitude of studies investigating novel diagnostic circulating biomarkers have not resulted in their implementation. This review aims to provide an overview of studies investigating novel circulating biomarkers for the diagnosis of HFpEF and determine their risk of bias (ROB). Methods and results A systematic literature search for studies investigating novel diagnostic HFpEF circulating biomarkers in humans was performed up until 21 April 2020. Those without diagnostic performance measures reported, or performed in an acute heart failure population were excluded, leading to a total of 28 studies. For each study, four reviewers determined the ROB within the QUADAS‐2 domains: patient selection, index test, reference standard, and flow and timing. At least one domain with a high ROB was present in all studies. Use of case‐control/two‐gated designs, exclusion of difficult‐to‐diagnose patients, absence of a pre‐specified cut‐off value for the index test without the performance of external validation, the use of inappropriate reference standards and unclear timing of the index test and/or reference standard were the main bias determinants. Due to the high ROB and different patient populations, no meta‐analysis was performed. Conclusion The majority of current diagnostic HFpEF biomarker studies have a high ROB, reducing the reproducibility and the potential for clinical care. Methodological well‐designed studies with a uniform reference diagnosis are urgently needed to determine the incremental value of circulating biomarkers for the diagnosis of HFpEF.
Collapse
Affiliation(s)
- Michiel T H M Henkens
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Sharon Remmelzwaal
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma L Robinson
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Adriana J van Ballegooijen
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne G Raafs
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Jerremy Weerts
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Mark R Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Sandra Sanders-van Wijk
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - M Louis Handoko
- Department of Cardiology, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carolyn S P Lam
- National Heart Centre Singapore, Singapore, Singapore.,Duke-National University of Singapore, Singapore, Singapore.,Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter J Paulus
- Department of Physiology, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Rein Vos
- Department of Methodology and Statistics, Maastricht University, Maastricht, The Netherlands
| | - Hans-Peter Brunner-La Rocca
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Biostatistics, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands.,Department of Cardiovascular Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
De Pascale MR, Della Mura N, Vacca M, Napoli C. Useful applications of growth factors for cardiovascular regenerative medicine. Growth Factors 2020; 38:35-63. [PMID: 33028111 DOI: 10.1080/08977194.2020.1825410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel advances for cardiovascular diseases (CVDs) include regenerative approaches for fibrosis, hypertrophy, and neoangiogenesis. Studies indicate that growth factor (GF) signaling could promote heart repair since most of the evidence is derived from preclinical models. Observational studies have evaluated GF serum/plasma levels as feasible biomarkers for risk stratification of CVDs. Noteworthy, two clinical interventional published studies showed that the administration of growth factors (GFs) induced beneficial effect on left ventricular ejection fraction (LVEF), myocardial perfusion, end-systolic volume index (ESVI). To date, large scale ongoing studies are in Phase I-II and mostly focussed on intramyocardial (IM), intracoronary (IC) or intravenous (IV) administration of vascular endothelial growth factor (VEGF) and fibroblast growth factor-23 (FGF-23) which result in the most investigated GFs in the last 10 years. Future data of ongoing randomized controlled studies will be crucial in understanding whether GF-based protocols could be in a concrete way effective in the clinical setting.
Collapse
Affiliation(s)
| | | | - Michele Vacca
- Division of Immunohematology and Transfusion Medicine, Cardarelli Hospital, Naples, Italy
| | - Claudio Napoli
- IRCCS Foundation SDN, Naples, Italy
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|