1
|
Ferreira AMV, Viana PF, Marajó L, Feldberg E. Karyotypic variation of two populations of the small freshwater stingray Potamotrygon wallacei Carvalho, Rosa & Araújo 2016: A classical and molecular approach. PLoS One 2023; 18:e0278828. [PMID: 36662738 PMCID: PMC9858463 DOI: 10.1371/journal.pone.0278828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 01/21/2023] Open
Abstract
Potamotrygoninae comprises a group of Neotropical fishes with an ancient relationship with marine environments. In the last few years, 11 new Potamotrygon species were described, including Potamotrygon wallacei Carvalho, Araújo e Rosa 2016. Cytogenetic data about this species are limited to classical markers (Giemsa, C-Banding and Ag-NOR techniques), these studies highlighted a rare sexual chromosome system XX/X0 with males presenting 67 chromosomes and females 68 chromosomes. The classical analyses performed here reveled populational variation in the karyotype formula, as well as, in the heterochromatin regions. Besides the classical markers, our molecular experiments showed multiple sites for 18S rDNA sequence (including in the X chromosomes) and single sites for 5S rDNA sequence, we did not find interstitial telomeric sequences. In addition, (AC)15, (AG)15, and (CAC)15 microsatellites showed association with the several autosome pair, and the (GT)15 clutters were found in only one population. On the other hand, (GATA)4 sequence showed association with the sexual chromosomes X in all males and females analyzed. Our results showed that pericentric inversions, in addition to fusions, shaped the karyotype of P. wallacei once we found two populations with distinct karyotype formula and this could be a result of the past events recovered by our modeling experiments. Besides, here we described the association of 18S and (GATA)4 motifs with sexual chromosomes, which indicated that these sequences had a novel in the differentiation of sexual chromosomes in P. wallacei.
Collapse
Affiliation(s)
- Alex M. V. Ferreira
- Programa de Pós-Graduação em Genética Conservação e Biologia Evolutiva – PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Leandro Marajó
- Programa de Pós-Graduação em Genética Conservação e Biologia Evolutiva – PPG GCBEv, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Manaus, Amazonas, Brazil
| |
Collapse
|
2
|
Fernandes MA, Cioffi MDB, Bertollo LAC, da Costa GWWF, da Motta-Neto CC, Borges AT, Soares RX, de Souza AS, Pinthong K, Supiwong W, Tanomtong A, Molina WF. Evolutionary Tracks of Chromosomal Diversification in Surgeonfishes (Acanthuridae: Acanthurus) Along the World's Biogeographic Domains. Front Genet 2021; 12:760244. [PMID: 34777477 PMCID: PMC8586516 DOI: 10.3389/fgene.2021.760244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Fishes of the genus Acanthurus (Acanthuridae) are strongly related to reef environments, in a broad biogeographic context worldwide. Although their biological aspects are well known, cytogenetic information related to this genus remains incipient. In this study, Acanthurus species from populations inhabiting coastal regions of the Southwest Atlantic (SWA), South Atlantic oceanic islands (Fernando de Noronha Archipelago and Trindade Island), Greater Caribbean (GC), and Indo-Pacific Ocean (the center of the origin of the group) were analyzed to investigate their evolutionary differentiation. For this purpose, we employed conventional cytogenetic procedures and fluorescence in situ hybridization of 18S rDNA, 5S rDNA, and H3 and H2B-H2A histone sequences. The Atlantic species (A. coeruleus, A. chirurgus, and A. bahianus) did not show variations among them, despite their vast continental and insular distribution. In contrast, A. coeruleus from SWA and GC diverged from each other in the number of 18S rDNA sites, a condition likely associated with the barrier created by the outflows of the Amazonas/Orinoco rivers. The geminate species A. tractus had a cytogenetic profile similar to that of A. bahianus. However, the chromosomal macrostructures and the distribution of rDNA and hisDNA sequences revealed moderate to higher rates of diversification when Acanthurus species from recently colonized areas (Atlantic Ocean) were compared to A. triostegus, a representative species from the Indian Ocean. Our cytogenetic data covered all Acanthurus species from the Western Atlantic, tracked phylogenetic diversification throughout the dispersive process of the genus, and highlighted the probable diversifying role of ocean barriers in this process.
Collapse
Affiliation(s)
- Maria Aparecida Fernandes
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Clóvis Coutinho da Motta-Neto
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Amanda Tôrres Borges
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rodrigo Xavier Soares
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Allyson Santos de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Krit Pinthong
- Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University, Muang, Thailand
| | - Weerayuth Supiwong
- Applied Science Program, Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai, Thailand
| | - Alongklod Tanomtong
- Program of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wagner Franco Molina
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
3
|
High Genetic Diversity despite Conserved Karyotype Organization in the Giant Trahiras from Genus Hoplias (Characiformes, Erythrinidae). Genes (Basel) 2021; 12:genes12020252. [PMID: 33578790 PMCID: PMC7916553 DOI: 10.3390/genes12020252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
In the fish genus Hoplias, two major general groups can be found, one of which is formed by the “common trahiras” (Hoplias malabaricus group) and the other by the “giant trahiras” (Hoplias lacerdae group, in addition to Hoplias aimara), which usually comprises specimens of larger body size. Previous investigations from the giant trahiras group recovered 2n = 50 meta/submetacentric chromosomes and no sex chromosome differentiation, indicating a probable conservative pattern for their karyotype organization. Here, we conducted comparative cytogenetic studies in six giant trahiras species, two of them for the first time. We employed standard and advanced molecular cytogenetics procedures, including comparative genomic hybridization (CGH), as well as genomic assessments of diversity levels and phylogenetic relationships among them. The results strongly suggest that the giant trahiras have a particular and differentiated evolutionary pathway inside the Hoplias genus. While these species share the same 2n and karyotypes, their congeneric species of the H. malabaricus group show a notable chromosomal diversity in number, morphology, and sex chromosome systems. However, at the same time, significant changes were characterized at their inner chromosomal level, as well as in their genetic diversity, highlighting their current relationships resulting from different evolutionary histories.
Collapse
|
4
|
Soares RX, da Costa GWWF, Cioffi MDB, Bertollo LAC, Motta-Neto CCD, Molina WF. Molecular cytogenetics insights in two pelagic big-game fishes in the Atlantic, the tarpon, Megalops atlanticus (Elopiformes: Megalopidae), and the sailfish, Istiophorus platypterus (Istiophoriformes: Istiophoridae). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Some pelagic and usually large sized fishes are preferential targets for sport and commercial fishing. Despite their economic importance, cytogenetic data on their evolutionary processes and management are very deficient, especially due to logistical difficulties. Here, information for two of such charismatic species, the tarpon, Megalops atlanticus (Elopiformes: Megalopidae), and the sailfish, Istiophorus platypterus (Istiophoriformes: Istiophoridae), both with a wide Atlantic distribution, were provided. Cytogenetic data were obtained using conventional methods (Giemsa staining, Ag-NORs technique, and C-banding), base-specific fluorochrome staining and fluorescence in situ hybridization (FISH) with rDNA probes. Megalops atlanticus has 2n = 50 chromosomes, all acrocentric ones (NF = 50), while Istiophorus platypterus has 2n = 48 chromosomes, 2m + 2st + 44a (NF = 52). Megalops atlanticus populations from the South Atlantic and Caribbean share identical karyotypic patterns, likely associated with gene flow between them. In turn, I. platypterus presents karyotype similarities with phylogenetically close groups, such as Carangidae. The chromosomal characteristics of these species highlight their independent evolutionary paths. Additionally, the current data contribute to knowledge of new aspects of pelagic fish fauna and will support further comparative studies with congeneric species, clarifying evolutionary karyotype trends of these fish groups.
Collapse
|
5
|
de Sousa RPC, Silva-Oliveira GC, Furo IO, de Oliveira-Filho AB, de Brito CDB, Rabelo L, Guimarães-Costa A, de Oliveira EHC, Vallinoto M. The role of the chromosomal rearrangements in the evolution and speciation of Elopiformes fishes (Teleostei; Elopomorpha). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Toma GA, de Moraes RLR, Sassi FDMC, Bertollo LAC, de Oliveira EA, Rab P, Sember A, Liehr T, Hatanaka T, Viana PF, Marinho MMF, Feldberg E, Cioffi MDB. Cytogenetics of the small-sized fish, Copeina guttata (Characiformes, Lebiasinidae): Novel insights into the karyotype differentiation of the family. PLoS One 2019; 14:e0226746. [PMID: 31856256 PMCID: PMC6922430 DOI: 10.1371/journal.pone.0226746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022] Open
Abstract
Lebiasinidae is a small fish family composed by miniature to small-sized fishes with few cytogenetic data (most of them limited to descriptions of diploid chromosome numbers), thus preventing any evolutionary comparative studies at the chromosomal level. In the present study, we are providing, the first cytogenetic data for the red spotted tetra, Copeina guttata, including the standard karyotype, C-banding, repetitive DNA mapping by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH), providing chromosomal patterns and novel insights into the karyotype differentiation of the family. Males and females share diploid chromosome number 2n = 42 and karyotype composed of 2 metacentric (m), 4 submetacentric (sm) and 36 subtelocentric to acrocentric (st-a) chromosomes. Blocks of constitutive heterochromatin were observed in the centromeric and interstitial regions of several chromosomes, in addition to a remarkably large distal block, heteromorphic in size, which fully corresponded with the 18S rDNA sites in the fourth chromosomal pair. This overlap was confirmed by 5S/18S rDNA dual-color FISH. On the other hand, 5S rDNA clusters were situated in the long and short arms of the 2nd and 15th pairs, respectively. No sex-linked karyotype differences were revealed by male/female CGH experiments. The genomic probes from other two lebiasinid species, Lebiasina melanoguttata and Pyrrhulina brevis, showed positive hybridization signals only in the NOR region in the genome of C. guttata. We demonstrated that karyotype diversification in lebiasinids was accompanied by a series of structural and numeric chromosome rearrangements of different types, including particularly fusions and fissions.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Renata Luiza Rosa de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Ezequiel Aguiar de Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Secretaria de Estado de Educação de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|