1
|
Stea SG, Grisel JE. β-Endorphin influences sedative and ataxic effects of alcohol. Alcohol 2024; 115:69-77. [PMID: 37741556 DOI: 10.1016/j.alcohol.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Beta-endorphin (β-E) is an opioid peptide linked to the behavioral effects of ethanol. For example, β-E provides negative feedback to inhibit the hypothalamic-pituitary-adrenal (HPA) stress axis, and neuroadaptation of this system to ethanol may facilitate sex differences in disordered drinking. Locomotor sensitivity to ethanol may also influence the risk for addiction; however, the role of β-E in psychomotor effects of ethanol is not fully understood. We examined the role of β-E and sex on locomotor effects of ethanol using adult male and female wild-type C57BL/6J and β-E deficient B6.129S2-Pomctm1Low/J mice in a parallel rod floor apparatus following 0.75 or 2.0 g/kg ethanol. Beginning 15 min after intraperitoneal injection, we recorded foot slips, distance traveled, slips per meter, first instance of immobility, and total time spent off-balance (lying on the floor) over 15 min, and collected blood for analysis of ethanol concentration 60 min after injection. Overall, β-E deficient mice were more sedated and ataxic following ethanol; at the lower dose they slipped more frequently and had a higher rate of slips per meter traveled. At the higher dose, β-E deficient mice were predominantly sedated, slipping less frequently, and traveling less, as well as spending more time off-balance and becoming immobile sooner. Genotype interacted with sex in that male β-E deficient mice slipped more frequently than their female counterparts, suggesting that β-E may elicit sex-dependent effects of ethanol-induced ataxia. Blood ethanol concentration did not differ between any group, suggesting that behavioral differences result from altered sensitivity to ethanol. Our data support the contention that β-E modulates the locomotor effects of ethanol and may influence ataxia in a sex-dependent manner. These findings help elucidate the role of β-E in diverging behavioral responses to ethanol and may aid the development of targeted treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Samuel G Stea
- Department of Psychology & Neuroscience Program, Bucknell University, Lewisburg, PA 17837, United States
| | - Judith E Grisel
- Department of Psychology & Neuroscience Program, Bucknell University, Lewisburg, PA 17837, United States.
| |
Collapse
|
2
|
Gasparyan A, Navarrete F, Navarro D, Manzanares J. Cannabidiol regulates behavioral and brain alterations induced by spontaneous alcohol withdrawal. Neuropharmacology 2023; 233:109549. [PMID: 37085012 DOI: 10.1016/j.neuropharm.2023.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The main goal of this study was to evaluate if the administration of cannabidiol (CBD) regulates behavioral and gene expression alterations induced by spontaneous alcohol withdrawal (SAW) in mice. Increasing doses of ethanol were administered to C57BL/6J male mice for 15 days (2.5, 3 and 3.5 g/kg/12 h, p. o.), and SAW was studied at 6, 12, 24, and 72 h after the last ethanol administration. The efficacy of acute CBD (10, 20, and 40 mg/kg, i. p.) to regulate behavioral changes induced by SAW was explored at 6 h. Gene expression analyses of cannabinoid receptors 1 (Cnr1) and 2 (Cnr2), mu-opioid receptor (Opmr1), and proopiomelanocortin (Pomc) in the nucleus accumbens (NAcc), and Pomc and tyrosine hydroxylase (Th) in the ventral tegmental area (VTA), were carried out by real time-PCR. Pearson correlation was used to identify potential associations between the gene expression data and the anxiety-like behaviors. Biostatistical studies suggest associations between gene expression data and the anxiogenic behaviors in mice exposed to the SAW model and treated with VEH and 40 mg/kg of CBD. Mice exposed to the SAW model showed significant somatic withdrawal signs, anxiety-like behaviors, and remarkable changes in the gene expression of all brain targets at 6 h. CBD dose-dependently normalized the behavioral, somatic withdrawal signs and anxiety-like behaviors and modulated gene expression changes in the NAcc, but not in the VTA. The results of this study suggest that CBD may regulate specific alcohol withdrawal-associated alterations. However, further studies are required to explore the possible mechanisms involved.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
3
|
Magliaro C, Ahluwalia A. Biomedical Research on Substances of Abuse: The Italian Case Study. Altern Lab Anim 2022; 50:423-436. [PMID: 36222242 DOI: 10.1177/02611929221132215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Substances of abuse have the potential to cause addiction, habituation or altered consciousness. Most of the research on these substances focuses on addiction, and is carried out through observational and clinical studies on humans, or experimental studies on animals. The transposition of the EU Directive 2010/63 into Italian law in 2014 (IT Law 2014/26) includes a ban on the use of animals for research on substances of abuse. Since then, in Italy, public debate has continued on the topic, while the application of the Article prohibiting animal research in this area has been postponed every couple of years. In the light of this debate, we briefly review a range of methodologies - including animal and non-animal, as well as patient or population-based studies - that have been employed to address the biochemical, neurobiological, toxicological, clinical and behavioural effects of substances of abuse and their dependency. We then discuss the implications of the Italian ban on the use of animals for such research, proposing concrete and evidence-based solutions to allow scientists to pursue high-quality basic and translational studies within the boundaries of the regulatory and legislative framework.
Collapse
Affiliation(s)
- Chiara Magliaro
- Research Centre 'E. Piaggio', 9310University of Pisa, Pisa, Italy.,Department of Information Engineering, 9310University of Pisa, Pisa, Italy.,Interuniversity Centre for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Arti Ahluwalia
- Research Centre 'E. Piaggio', 9310University of Pisa, Pisa, Italy.,Department of Information Engineering, 9310University of Pisa, Pisa, Italy.,Interuniversity Centre for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| |
Collapse
|
4
|
Lerma-Cabrera JM, Carvajal F, Garbutt JC, Navarro M, Thiele TE. The melanocortin system as a potential target for treating alcohol use disorders: A review of pre-clinical data. Brain Res 2019; 1730:146628. [PMID: 31891691 DOI: 10.1016/j.brainres.2019.146628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022]
Abstract
The melanocortin (MC) system consists of neuropeptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). In the brain, MC neuropeptides signal primarily through the MC-3 and MC-4 receptors, which are widely expressed throughout the brain. While the MC system has been largely studied for its role in food intake and body weight regulation, converging evidence has emerged over approximately the last 20-years showing that alcohol (ethanol), and other drugs of abuse influence the central MC system, and that manipulating MC receptor signalling modulates ethanol intake. Although there is divergent evidence, the wealth of data appears to suggest that activating MC signalling, primarily through the MC-4 receptor, is protective against excessive ethanol consumption. In the present review, we first describe the MC system and then detail how ethanol exposure and consumption alters central MC and MC-receptor expression and levels. This is followed by a review of the data, from pharmacological and genetic studies, which show that manipulations of MC receptor activity alter ethanol intake. We then briefly highlight studies implicating a role for the MC system in modulating neurobiological responses and intake of other drugs of abuse, including amphetamine, cocaine and opioids. Finally, we introduce relatively new observations that the drug, bupropion (BUP), a drug that activates central MC activity, significantly reduces ethanol intake in rodent models when administered alone and in combination with the non-selective opioid receptor antagonist, naltrexone. Phase II clinical trials are currently underway to assess the efficacy of BUP as a treatment for alcohol use disorders.
Collapse
Affiliation(s)
| | | | - James C Garbutt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Montserrat Navarro
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Todd E Thiele
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|