1
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
2
|
Menon T, Gopal S, Rastogi Verma S. Targeted therapies in non-small cell lung cancer and the potential role of AI interventions in cancer treatment. Biotechnol Appl Biochem 2023; 70:344-356. [PMID: 35609005 DOI: 10.1002/bab.2356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/17/2022] [Indexed: 11/12/2022]
Abstract
Non-small cell lung cancer is the most prevalent lung cancer, and almost three-fourths of patients are diagnosed in the advanced stage directly. In this stage, chemotherapy gives only a 15% 5-year survival rate. As people have varied symptoms and reactions to a specific cancer type, treatment for the tumor is likely to fall short, complicating cancer therapy. Immunotherapy is a breakthrough treatment involving drugs targeting novel immune checkpoint inhibitors like CTLA-4 and PD-1/PD-L1, along with combination therapies. In addition, the utility of engineered CAR-T and CAR-NK cells can be an effective strategy to promote the immune response against tumors. The concept of personalized cancer vaccines with the discovery of neoantigens loaded on dendritic cell vectors can also be an effective approach to cure cancer. Advances in genetic engineering tools like CRISPR/Cas9-mediated gene editing of T cells to enhance their effector function is another ray of hope. This review aims to provide an overview of recent developments in cancer immunotherapy, which can be used in first- and second-line treatments in the clinical space. Further, the intervention of artificial intelligence to detect cancer tumors at an initial stage with the help of machine learning techniques is also explored.
Collapse
Affiliation(s)
- Tarunya Menon
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shubhang Gopal
- Department of Information Technology, Delhi Technological University, Delhi, India
| | | |
Collapse
|
3
|
Keshavarz A, Salehi A, Khosravi S, Shariati Y, Nasrabadi N, Kahrizi MS, Maghsoodi S, Mardi A, Azizi R, Jamali S, Fotovat F. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther 2022; 13:482. [PMID: 36153626 PMCID: PMC9509604 DOI: 10.1186/s13287-022-03163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in adoptive cell therapy over the last four decades have revealed various new therapeutic strategies, such as chimeric antigen receptors (CARs), which are dedicated immune cells that are engineered and administered to eliminate cancer cells. In this context, CAR T-cells have shown significant promise in the treatment of hematological malignancies. However, many obstacles limit the efficacy of CAR T-cell therapy in both solid tumors and hematological malignancies. Consequently, CAR-NK and CAR-M cell therapies have recently emerged as novel therapeutic options for addressing the challenges associated with CAR T-cell therapies. Currently, many CAR immune cell trials are underway in various human malignancies around the world to improve antitumor activity and reduce the toxicity of CAR immune cell therapy. This review will describe the comprehensive literature of recent findings on CAR immune cell therapy in a wide range of human malignancies, as well as the challenges that have emerged in recent years.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University,, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Setareh Khosravi
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasaman Shariati
- Department of General Surgery, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sairan Maghsoodi
- Department of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramyar Azizi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jamali
- Department of Endodontics, College of Stomatology, Stomatological Hospital, Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | - Farnoush Fotovat
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Rocconi RP, Stanbery L, Madeira da Silva L, Barrington RA, Aaron P, Manning L, Horvath S, Wallraven G, Bognar E, Walter A, Nemunaitis J. Long-Term Follow-Up of Gemogenovatucel-T (Vigil) Survival and Molecular Signals of Immune Response in Recurrent Ovarian Cancer. Vaccines (Basel) 2021; 9:vaccines9080894. [PMID: 34452019 PMCID: PMC8402348 DOI: 10.3390/vaccines9080894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aim: To determine the relationship between gene expression profile (GEP) and overall survival (OS) by NanoString following treatment with Vigil. Patients and Methods: Recurrent ovarian cancer patients (n = 21) enrolled in prior clinical trials. Results: GEP stratified by TISHIGH vs. TISLOW demonstrated OS benefit (NR vs. 5.8 months HR 0.23; p = 0.0379), and in particular, MHC-II elevated baseline expression was correlated with OS advantage (p = 0.038). Moreover, 1-year OS was 75% in TISHIGH patients vs. 25% in TISLOW (p = 0.03795). OS was also correlated with positive γ-IFN ELISPOT response, 36.8 vs. 23.0 months (HR 0.19, p = 0.0098). Conclusion: Vigil demonstrates OS benefit in correlation with TISHIGH score, elevated MHC-II expression and positive γ-IFN ELISPOT in recurrent ovarian cancer patients.
Collapse
Affiliation(s)
- Rodney P. Rocconi
- Mitchell Cancer Institute, Division of Gynecologic Oncology, University of South Alabama, Mobile, AL 36604, USA;
| | - Laura Stanbery
- Gradalis, Inc., 2545 Golden Bear Drive, Suite 110, Carrollton, TX 75006, USA; (L.S.); (P.A.); (L.M.); (S.H.); (G.W.); (E.B.)
| | - Luciana Madeira da Silva
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688, USA; (L.M.d.S.); (R.A.B.)
| | - Robert A. Barrington
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688, USA; (L.M.d.S.); (R.A.B.)
| | - Phylicia Aaron
- Gradalis, Inc., 2545 Golden Bear Drive, Suite 110, Carrollton, TX 75006, USA; (L.S.); (P.A.); (L.M.); (S.H.); (G.W.); (E.B.)
| | - Luisa Manning
- Gradalis, Inc., 2545 Golden Bear Drive, Suite 110, Carrollton, TX 75006, USA; (L.S.); (P.A.); (L.M.); (S.H.); (G.W.); (E.B.)
| | - Staci Horvath
- Gradalis, Inc., 2545 Golden Bear Drive, Suite 110, Carrollton, TX 75006, USA; (L.S.); (P.A.); (L.M.); (S.H.); (G.W.); (E.B.)
| | - Gladice Wallraven
- Gradalis, Inc., 2545 Golden Bear Drive, Suite 110, Carrollton, TX 75006, USA; (L.S.); (P.A.); (L.M.); (S.H.); (G.W.); (E.B.)
| | - Ernest Bognar
- Gradalis, Inc., 2545 Golden Bear Drive, Suite 110, Carrollton, TX 75006, USA; (L.S.); (P.A.); (L.M.); (S.H.); (G.W.); (E.B.)
| | | | - John Nemunaitis
- Gradalis, Inc., 2545 Golden Bear Drive, Suite 110, Carrollton, TX 75006, USA; (L.S.); (P.A.); (L.M.); (S.H.); (G.W.); (E.B.)
- Correspondence:
| |
Collapse
|
5
|
Jin L, Cao L, Zhu Y, Cao J, Li X, Zhou J, Liu B, Zhao T. Enhance anti-lung tumor efficacy of chimeric antigen receptor-T cells by ectopic expression of C-C motif chemokine receptor 6. Sci Bull (Beijing) 2021; 66:803-812. [PMID: 36654137 DOI: 10.1016/j.scib.2020.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) cells have limited therapeutic efficacy against solid tumors, partially due to their limited ability to reach and invade into the neoplastic foci. By gene expression profiling interactive analysis, we identified that the C-C motif chemokine ligand (CCL) 20 is highly expressed in lung and other most incidence and/or mortality cancers such as colon, rectum, stomach, and liver cancers. Forced expression of C-C motif chemokine receptor 6 (CCR6), the biunique receptor of CCL20, results in robust trafficking of CAR-T cells toward CCL20-secreting tumor cells. In a lung cancer xenograft mouse model, CCR6-expressing CAR-T cells efficiently migrate to and infiltrate into solid tumors upon infusion, leading to effective tumor clearance and significantly prolonged survival of tumor-bearing mice. In addition, culturing CCR6-CAR-T cells with interleukin (IL)-7 and IL-15 further improved their anti-lung cancer activity. Our findings provide supporting evidence for the clinical development of chemokine receptor-engineered CAR-T cells for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Liyuan Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yingjie Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxia Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Translational Medicine Center of Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Cortés-Hernández A, Alvarez-Salazar EK, Soldevila G. Chimeric Antigen Receptor (CAR) T Cell Therapy for Cancer. Challenges and Opportunities: An Overview. Methods Mol Biol 2021; 2174:219-244. [PMID: 32813253 DOI: 10.1007/978-1-0716-0759-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of immunotherapy as an alternative treatment for cancer patients has become of great interest in the scientific community as it is required to overcome many of the currently unsolved problems such as tumor escape, immunosuppression and unwanted unspecific toxicity. The use of chimeric antigen receptor T cells has been a very successful strategy in some hematologic malignancies. However, the application of CAR T cells has been limited to solid tumors, and this has aimed the development of new generation of CARs with enhanced effectivity and specificity. Here, we review the state of the art of CAR T cell therapy with special emphasis on the current challenges and opportunities.
Collapse
Affiliation(s)
- Arimelek Cortés-Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Evelyn Katy Alvarez-Salazar
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México.
| |
Collapse
|
7
|
Resident Memory T Cells and Their Effect on Cancer. Vaccines (Basel) 2020; 8:vaccines8040562. [PMID: 33019493 PMCID: PMC7711795 DOI: 10.3390/vaccines8040562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Resident memory T (TRM) cells are a unique subset of CD8+ T cells that are present within certain tissues and do not recirculate through the blood. Long term memory establishment and maintenance are dependent on tissue population of memory T cells. They are characterized by dual CD69/CD103 positivity, and play a role in both response to viral infection and local cancer immunosurveillance. Human TRM cells demonstrate the increased expression of adhesion molecules to facilitate tissue retention, have reduced proliferation and produce both regulatory and immune responsive cytokines. TRM cell phenotype is often characterized by a distinct expression profile driven by Runx3, Blimp1, and Hobit transcription factors. The accumulation of TRM cells in tumors is associated with increased survival and response to immunotherapies, including anti-PD-1 and anti-CTLA-4. In this review, we explore potential mechanisms of TRM cell transformation and maintenance, as well as potential applications for the use of TRM cells in both the development of supportive therapies and establishing more accurate prognoses.
Collapse
|
8
|
Li P, Yang L, Li T, Bin S, Sun B, Huang Y, Yang K, Shan D, Gu H, Li H. The Third Generation Anti-HER2 Chimeric Antigen Receptor Mouse T Cells Alone or Together With Anti-PD1 Antibody Inhibits the Growth of Mouse Breast Tumor Cells Expressing HER2 in vitro and in Immune Competent Mice. Front Oncol 2020; 10:1143. [PMID: 32766150 PMCID: PMC7381237 DOI: 10.3389/fonc.2020.01143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cells have great efficacy against CD19+ leukemia but little success for solid tumors. This study explored the effectiveness of third generation anti-HER2 CAR-T cells alone or in combination with anti-PD1 antibody on breast tumor cells expressing HER2 in vitro and in immune competent mouse model. The PDL1-positive mouse mammary tumor cell line 4T1 engineered to express luciferase and human HER2 was used as the target cell line (4T1-Luc-HER2). Anti-HER2 CAR-T cells were generated by transducing mouse spleen T cells with recombinant lentiviruses. ELISA analysis showed that IL-2 and IFN-γ secretion was increased in CAR-T cells co-cultured with the target cells, and the secretion of these two cytokines was increased further with the addition of anti-PD1 antibody. Lactate dehydrogenase assay revealed that CAR-T cells displayed a potent cytotoxicity against the target cells, and the addition of anti-PD1 antibody further enhanced the cytotoxicity. At the effector: target ratio of 16:1, cytotoxicity was 39.8% with CAR-T cells alone, and increased to 49.5% with the addition of anti-PD1 antibody. In immune competent syngeneic mouse model, CAR-T cells were found to be present in tumor stroma, inhibited tumor growth and increased tumor apoptosis significantly. Addition of anti-PD1 antibody further enhanced these anti-tumor activities. Twenty-one days after treatment, tumor weight was reduced by 50.0% and 73.3% in CAR-T group and CAR-T plus anti-PD1 group compared with blank T group. Our results indicate that anti-PD1 antibody can greatly increase the efficacy of anti-HER2 CAR-T against HER2-positive solid tumors.
Collapse
Affiliation(s)
- Panyuan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lingcong Yang
- The Third People's Hospital of Dalian, Dalian, China
| | - Tong Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shufang Bin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bohao Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuting Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiyan Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daming Shan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haihua Gu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol 2020; 17:595-610. [PMID: 32572208 PMCID: PMC7306938 DOI: 10.1038/s41571-020-0387-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Immune-checkpoint inhibition provides an unmatched level of durable clinical efficacy in various malignancies. Such therapies promote the activation of antigen-specific T cells, although the precise targets of these T cells remain unknown. Exploiting these targets holds great potential to amplify responses to treatment, such as by combining immune-checkpoint inhibition with therapeutic vaccination or other antigen-directed treatments. In this scenario, the pivotal hurdle remains the definition of valid HLA-restricted tumour antigens, which requires several levels of evidence before targets can be established with sufficient confidence. Suitable antigens might include tumour-specific antigens with alternative or wild-type sequences, tumour-associated antigens and cryptic antigens that exceed exome boundaries. Comprehensive antigen classification is required to enable future clinical development and the definition of innovative treatment strategies. Furthermore, clinical development remains challenging with regard to drug manufacturing and regulation, as well as treatment feasibility. Despite these challenges, treatments based on diligently curated antigens combined with a suitable therapeutic platform have the potential to enable optimal antitumour efficacy in patients, either as monotherapies or in combination with other established immunotherapies. In this Review, we summarize the current state-of-the-art approaches for the identification of candidate tumour antigens and provide a structured terminology based on their underlying characteristics. Immune-checkpoint inhibition has transformed the treatment of patients with advanced-stage cancers. Nonetheless, the specific antigens targeted by T cells that are activated or reactivated by these agents remain largely unknown. In this Review, the authors describe the characterization and classification of tumour antigens including descriptions of the most appropriate detection methods, and discuss potential regulatory issues regarding the use of tumour antigen-based therapeutics. Immune-checkpoint inhibition has profoundly changed the paradigm for the care of several malignancies. Although these therapies activate antigen-specific T cells, the precise mechanisms of action and their specific targets remain largely unknown. Anticancer immunotherapies encompass two fundamentally different therapeutic principles based on knowledge of their therapeutic targets, that either have been characterized (antigen-aware) or have remained elusive (antigen-unaware). HLA-presented tumour antigens of potential therapeutic relevance can comprise alternative or wild-type amino acid sequences and can be subdivided into different categories based on their mechanisms of formation. The available methods for the detection of HLA-presented antigens come with intrinsic challenges and limitations and, therefore, warrant multiple lines of evidence of robust tumour specificity before being considered for clinical use. Knowledge obtained using various antigen-detection strategies can be combined with different therapeutic platforms to create individualized therapies that hold great promise, including when combined with already established immunotherapies. Tailoring immunotherapies while taking into account the substantial heterogeneity of malignancies as well as that of HLA loci not only requires innovative science, but also demands innovative approaches to trial design and drug regulation.
Collapse
|
10
|
Nemunaitis J, Stanbery L, Senzer N. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection: let the virus be its own demise. Future Virol 2020. [PMCID: PMC7249572 DOI: 10.2217/fvl-2020-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a collaborative global effort to construct novel therapeutic and prophylactic approaches to SARS-CoV-2 management. Although vaccine development is crucial, acute management of newly infected patients, especially those with severe acute respiratory distress syndrome, is a priority. Herein we describe the rationale and potential of repurposing a dual plasmid, Vigil (pbi-shRNAfurin-GM-CSF), now in Phase III cancer trials, for the treatment of and, in certain circumstances, enhancement of the immune response to SARS-CoV-2.
Collapse
|
11
|
LunX-CAR T Cells as a Targeted Therapy for Non-Small Cell Lung Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:361-370. [PMID: 32405534 PMCID: PMC7210386 DOI: 10.1016/j.omto.2020.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Non-small cell lung cancer (NSCLC) carries a high mortality, and efficacious therapy is lacking. Therapy using chimeric antigen receptor (CAR) T cells has been used efficaciously against hematologic malignancies, but the curative effect against solid tumors is not satisfactory. A lack of antigen targets is one of the main reasons for this limited efficacy. Previously, we showed that lung-specific X (LUNX; also known as BPIFA1, PLUNC, and SPLUNC1) is overexpressed in lung cancer cells. Here, we constructed a CAR-T-cell-based strategy to target LunX (CARLunX T cells). CAR T cells were developed so that, upon specific recognition of LunX, they secreted cytokines and killed LunX-positive NSCLC cells. In vitro, CARLunX T cells displayed enhanced toxicity toward NSCLC lines and production of cytokines and showed specific LunX-dependent recognition of NSCLC cells. Adoptive transfer of CARLunX T cells induced regression of established metastatic lung cancer xenografts and prolonged survival. CARLunX T cells could infiltrate into the tumor. Also, we constructed a patient-derived xenograft model of lung cancer. After therapy with CARLunX T cells, tumor growth was suppressed, and survival was prolonged significantly. Together, our findings offer preclinical evidence of the immunotherapeutic targeting of LunX as a strategy to treat NSCLC.
Collapse
|
12
|
Parriott G, Deal K, Crean S, Richardson E, Nylen E, Barber A. T-cells expressing a chimeric-PD1-Dap10-CD3zeta receptor reduce tumour burden in multiple murine syngeneic models of solid cancer. Immunology 2020; 160:280-294. [PMID: 32144940 DOI: 10.1111/imm.13187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
Adoptive transfer of T-cells is a promising therapy for many cancers. To enhance tumour recognition by T-cells, chimeric antigen receptors (CARs) consisting of signalling domains fused to receptors that recognize tumour-associated antigens can be expressed in T-cells. While CAR T-cells have shown clinical success for treating haematopoietic malignancies, using CAR T-cells to treat solid tumours remains a challenge. We developed a chimeric PD1 (chPD1) receptor that recognizes the ligands for the PD1 receptor that are expressed on many types of solid cancer. To determine if this novel CAR could target a wide variety of tumour types, the anti-tumour efficacy of chPD1 T-cells against syngeneic murine models of melanoma, renal, pancreatic, liver, colon, breast, prostate and bladder cancer was measured. Of the 14 cell lines tested, all expressed PD1 ligands on their cell surface, making them potential targets for chPD1 T-cells. ChPD1 T-cells lysed the tumour cells and secreted pro-inflammatory cytokines [interferon (IFN)γ, tumour necrosis factor (TNF)α, interleukin (IL)-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-17 and IL-21], but did not secrete the anti-inflammatory cytokine IL-10. Furthermore, T-cells expressing chPD1 receptors reduced an established tumour burden and led to long-term tumour-free survival in all types of solid tumours tested. ChPD1 T-cells did not survive longer than 14 days in vivo; however, treatment with chPD1 T-cells induced protective host anti-tumour memory responses in tumour-bearing mice. Therefore, adoptive transfer of chPD1 T-cells could be a novel therapeutic strategy to treat multiple types of solid cancer.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Kelsey Deal
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Shane Crean
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Elle Richardson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Nylen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| |
Collapse
|
13
|
Goebeler ME, Bargou RC. T cell-engaging therapies - BiTEs and beyond. Nat Rev Clin Oncol 2020; 17:418-434. [PMID: 32242094 DOI: 10.1038/s41571-020-0347-5] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Immuno-oncology approaches have entered clinical practice, with tremendous progress particularly in the field of T cell-engaging therapies over the past decade. Herein, we provide an overview of the current status of bispecific T cell engager (BiTE) therapy, considering the unprecedented new indication for such therapy in combating minimal (or measurable) residual disease in patients with acute lymphoblastic leukaemia, and the development of novel approaches based on this concept. Key aspects that we discuss include the current clinical data, challenges relating to treatment administration and patient monitoring, toxicities and resistance to treatment, and novel strategies to overcome these hurdles as well as to broaden the indications for BiTE therapy, particularly to common solid cancers. Elucidation of mechanisms of resistance and immune escape and new technologies used in drug development pave the way for new and more-effective therapies and rational combinatorial approaches. In particular, we highlight novel therapeutic agents, such as bifunctional checkpoint-inhibitory T cell engagers (CiTEs), simultaneous multiple interaction T cell engagers (SMITEs), trispecific killer engagers (TriKEs) and BiTE-expressing chimeric antigen receptor (CAR) T cells (CART.BiTE cells), designed to integrate various immune functions into one molecule or a single cellular vector and thereby enhance efficacy without compromising safety. We also discuss the targeting of intracellular tumour-associated epitopes using bispecific constructs with T cell receptor (TCR)-derived, rather than an antibody-based, antigen-recognition domains, termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs), which might broaden the armamentarium of T cell-engaging therapies.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Ralf C Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
14
|
Kintz H, Nylen E, Barber A. Inclusion of Dap10 or 4-1BB costimulation domains in the chPD1 receptor enhances anti-tumor efficacy of T cells in murine models of lymphoma and melanoma. Cell Immunol 2020; 351:104069. [PMID: 32106933 DOI: 10.1016/j.cellimm.2020.104069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/23/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022]
Abstract
Chimeric antigen receptors (CAR) utilize costimulatory domains to enhance anti-tumor efficacy. However, it is unclear which costimulatory domain is preferable. Therefore, the intracellular domains of CD28, Dap10, 41BB, GITR, ICOS, or OX40 were compared in a murine chimeric PD1 (chPD1) receptor that targets tumor-associated PD1 ligands. Upon antigen restimulation, T cells expressing chPD1-CD28 receptors had reduced lytic capacity. While most of the chPD1 T cell receptors secreted pro-inflammatory (IFNγ, TNFα, IL-2, GM-CSF, IL-17, and IL-21) and anti-inflammatory cytokines (IL-10), chPD1-Dap10 did not secrete IL-10. Furthermore, chPD1-Dap10 and -41BB receptors induced a memory precursor phenotype, had enhanced persistence in vivo, and superior therapeutic efficacy in murine models of T cell lymphoma and melanoma compared to chPD1-CD28 or chPD1-GITR expressing T cells. Therefore, each costimulatory domain induces differential effects in CAR-expressing T cells and inclusion of Dap10 or 4-1BB costimulatory domains may induce a preferential cytokine profile and differentiation for cancer therapy.
Collapse
Affiliation(s)
- Hailey Kintz
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Emily Nylen
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA
| | - Amorette Barber
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA.
| |
Collapse
|