1
|
Wu S, Weir MD, Lei L, Liu J, Xu HHK. Novel nanographene oxide-calcium phosphate cement inhibits Enterococcus faecalis biofilm and supports dental pulp stem cells. J Orthop Surg Res 2021; 16:580. [PMID: 34627321 PMCID: PMC8501535 DOI: 10.1186/s13018-021-02736-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Enterococcus faecalis (E. faecalis) is the most recovered species from the root canals after failed root canal treatment. Calcium phosphate bone cement (CPC) scaffold is promising for applications in endodontic treatment as a kind of root canal sealer. Graphene oxide (GO) has been extensively considered as a kind of promising nano-materials for antibacterial applications. In the present study, an injectable CPC-chitosan paste containing GO was developed for promising endodontic therapy. The antibacterial properties of this paste against E. faecalis biofilms as well as the support for human dental pulp stem cells (hDPSCs) were investigated. Methods CPC-chitosan composite with or without GO injectable scaffold was fabricated. The hDPSC growth and viability on scaffolds were investigated by live/dead assay. Antibacterial effects against E. faecalis biofilms were determined in clinical detin block samples. Results The antibacterial CPC-chitosan-GO disks had excellent hDPSC support with the percentages of live cells at around 90%. CPC-chitosan-GO also had greater antibacterial activity on E. faecalis than that of CPC-chitosan control using detin block models (p < 0.05). Conclusions The injectable CPC-chitosan-GO paste had strong effects on inhibition E. faecalis and hDPSC support, which could fill the void of adjusting paste to the defect and shaping in situ for promising endodontic therapy.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
2
|
Berbéri A, Fayyad-Kazan M, Ayoub S, Bou Assaf R, Sabbagh J, Ghassibe-Sabbagh M, Badran B. Osteogenic potential of dental and oral derived stem cells in bone tissue engineering among animal models: An update. Tissue Cell 2021; 71:101515. [PMID: 33657504 DOI: 10.1016/j.tice.2021.101515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Small bone defects can heal spontaneously through the bone modeling process due to their physiological environmental conditions. The bone modeling cycle preserves the reliability of the skeleton through the well-adjusted activities of its fundamental cell. Stem cells are a source of pluripotent cells with a capacity to differentiate into any tissue in the existence of a suitable medium. The concept of bone engineering is based on stem cells that can differentiate into bone cells. Mesenchymal stromal cells have been evaluated in bone tissue engineering due to their capacity to differentiate in osteoblasts. They can be isolated from bone marrow and from several adults oral and dental tissues such as permanent or deciduous teeth dental pulp, periodontal ligament, apical dental papilla, dental follicle precursor cells usually isolated from the follicle surrounding the third molar, gingival tissue, periosteum-derived cells, dental alveolar socket, and maxillary sinus Schneiderian membrane-derived cells. Therefore, a suitable animal model is a crucial step, as preclinical trials, to study the outcomes of mesenchymal cells on the healing of bone defects. We will discuss, through this paper, the use of mesenchymal stem cells obtained from several oral tissues mixed with different types of scaffolds tested in different animal models for bone tissue engineering. We will explore and link the comparisons between human and animal models and emphasized the factors that we need to take into consideration when choosing animals. The pig is considered as the animal of choice when testing large size and multiple defects for bone tissue engineering.
Collapse
Affiliation(s)
- Antoine Berbéri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Sara Ayoub
- Department of Prosthodontics, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Rita Bou Assaf
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon.
| | - Joseph Sabbagh
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| |
Collapse
|
3
|
IL-1 Receptor Antagonist Protects the Osteogenesis Capability of Gingival-Derived Stem/Progenitor Cells under Inflammatory Microenvironment Induced by Porphyromonas gingivalis Lipopolysaccharides. Stem Cells Int 2021; 2021:6638575. [PMID: 33531908 PMCID: PMC7834827 DOI: 10.1155/2021/6638575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/20/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been considered to be a future treatment option for periodontitis due to their excellent regenerative capability. However, it is still a challenge to protect MSCs' biological properties from multiple bacterial toxins in local inflammatory environment. The present study is aimed at investigating the treatment effect of interleukin-1 receptor antagonist (IL-1ra) on cell proliferation, migration, and osteogenic differentiation of gingival-derived mesenchymal stem cells (GMSCs) under an inflammatory microenvironment induced by Porphyromonas gingivalis lipopolysaccharides (P. gingivalis-LPS). GMSCs derived from Sprague-Dawley (SD) rats' free gingival tissues were treated with P. gingivalis-LPS (10 μg/mL) to create in vitro inflammatory environment. Different concentrations of IL-1ra (0.01-1 μg/mL) were used to antagonize the negative effect of LPS. Cell behaviors including proliferation, cloning formation unit (CFU), cell migration, osteogenic differentiation, mineral deposition, and cytokine production were assessed to investigate the protection effect of IL-1ra on GMSCs under inflammation. The toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway activated by LPS was evaluated by real-time quantitative polymerase chain reaction (RT-PCR) and western blot. In response to P. gingivalis-LPS treatment, cell numbers, cloning formation rate, cell migration rate, proinflammatory cytokine production, and osteogenic differentiation-associated protein/mRNA expressions as well as mineralized nodules were suppressed in a time-dependent manner. These negative effects were effectively attenuated by IL-1ra administration in a time- and dose-dependent manner. In addition, mRNA expressions of TLR4 and IkBα decreased dramatically when IL-1ra was added into LPS-induced medium. IL-1ra also reversed the LPS-induced TLR4/NF-κB activation as indicated by western blot. The present study revealed that IL-1ra decreased inflammatory cytokine production in a supernatant, so as to protect GMSCs' osteogenesis capacity and other biological properties under P. gingivalis-LPS-induced inflammatory environment. This might be explained by IL-1ra downregulating TLR4-mediated NF-κB signaling pathway activation.
Collapse
|
4
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Dental Tissue-Derived Human Mesenchymal Stem Cells and Their Potential in Therapeutic Application. Stem Cells Int 2020; 2020:8864572. [PMID: 32952572 PMCID: PMC7482010 DOI: 10.1155/2020/8864572] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells, which exhibit plastic adherence, express specific cell surface marker spectrum, and have multi-lineage differentiation potential. These cells can be obtained from multiple tissues. Dental tissue-derived hMSCs (dental MSCs) possess the ability to give rise to mesodermal lineage (osteocytes, adipocytes, and chondrocytes), ectodermal lineage (neurocytes), and endodermal lineages (hepatocytes). Dental MSCs were first isolated from dental pulp of the extracted third molar and till now they have been purified from various dental tissues, including pulp tissue of permanent teeth and exfoliated deciduous teeth, apical papilla, periodontal ligament, gingiva, dental follicle, tooth germ, and alveolar bone. Dental MSCs are not only easily accessible but are also expandable in vitro with relative genomic stability for a long period of time. Moreover, dental MSCs have exhibited immunomodulatory properties by secreting cytokines. Easy accessibility, multi-lineage differentiation potential, and immunomodulatory effects make dental MSCs distinct from the other hMSCs and an effective tool in stem cell-based therapy. Several preclinical studies and clinical trials have been performed using dental MSCs in the treatment of multiple ailments, ranging from dental diseases to nondental diseases. The present review has summarized dental MSC sources, multi-lineage differentiation capacities, immunomodulatory features, its potential in the treatment of diseases, and its application in both preclinical studies and clinical trials. The regenerative therapeutic strategies in dental medicine have also been discussed.
Collapse
|
6
|
Stuepp RT, Modolo F, Trentin AG, Garcez RC, Biz MT. HNK1 and Sox10 are present during repair of mandibular bone defects. Biotech Histochem 2020; 95:619-625. [PMID: 32362205 DOI: 10.1080/10520295.2020.1744728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Neural crest cells possess characteristics of stem cells including plasticity and ability to differentiate into various cell types. HNK1 and Sox10 are markers of neural crest cell progenitors that have been demonstrated in osteoblasts during osteogenesis of the maxilla and mandible. We investigated the presence of Sox10 and HNK1 during regeneration of mandibular bone defects. Defects were created in mandibles of rats. Samples of these defects were collected at 7, 14 and 28 days post-surgery; bone regeneration was observed during this period. Immunohistochemical analysis revealed expression of HNK1 and Sox10 in osteoblasts, osteocytes and osteogenic cells, whereas osteoclasts were unstained. HNK1 expression was increased in osteoblasts and osteocytes over time and SOX10 expression was found in osteoblasts and osteogenic cells at 7, 14 and 28 days post-surgery. HNK1 and Sox10 are present in osteoblasts, osteocytes and osteogenic cells during mandible bone regeneration.
Collapse
Affiliation(s)
- R T Stuepp
- Postgraduate Program in Dentistry, Federal University of Santa Catarina , Florianópolis, Brazil.,Pathology Department, Federal University of Santa Catarina , Florianopolis, Brazil
| | - F Modolo
- Postgraduate Program in Dentistry, Federal University of Santa Catarina , Florianópolis, Brazil.,Pathology Department, Federal University of Santa Catarina , Florianopolis, Brazil
| | - A G Trentin
- Cellular Biology, Embryology and Genetics Department and Cellular Biology, Federal University of Santa Catarina , Florianopolis, Brazil
| | - R C Garcez
- Cellular Biology, Embryology and Genetics Department and Cellular Biology, Federal University of Santa Catarina , Florianopolis, Brazil
| | - M T Biz
- Morphology Sciences Department, Federal University of Santa Catarina , Florianopolis, Brazil
| |
Collapse
|