1
|
Caldiroli A, La Tegola D, Affaticati LM, Manzo F, Cella F, Scalia A, Capuzzi E, Nicastro M, Colmegna F, Buoli M, Clerici M, Dakanalis A. Clinical and Peripheral Biomarkers in Female Patients Affected by Anorexia: Does the Neutrophil/Lymphocyte Ratio (NLR) Affect Severity? Nutrients 2023; 15:nu15051133. [PMID: 36904132 PMCID: PMC10005379 DOI: 10.3390/nu15051133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Anorexia Nervosa (AN) is a disabling disorder characterized by extreme weight loss and frequent chronicization, especially in its most severe forms. This condition is associated with a pro-inflammatory state; however, the role of immunity in symptom severity remains unclear. Total cholesterol, white blood cells, neutrophils, lymphocytes, platelets, iron, folate, vitamin D and B12 were dosed in 84 female AN outpatients. Mildly severe (Body Mass Index-BMI ≥ 17) versus severe (BMI < 17) patients were compared using one-way ANOVAs or χ2 tests. A binary logistic regression model was run to investigate the potential association between demographic/clinical variables or biochemical markers and the severity of AN. Patients with severe anorexia (compared to mild forms) were older (F = 5.33; p = 0.02), engaged in more frequent substance misuse (χ2 = 3.75; OR = 3.86; p = 0.05) and had a lower NLR (F = 4.12; p = 0.05). Only a lower NLR was predictive of severe manifestations of AN (OR = 0.007; p = 0.031). Overall, our study suggests that immune alterations may be predictive of AN severity. In more severe forms of AN, the response of the adaptive immunity is preserved, while the activation of the innate immunity may be reduced. Further studies with larger samples and a wider panel of biochemical markers are needed to confirm the present results.
Collapse
Affiliation(s)
- Alice Caldiroli
- Department of Mental Health and Addiction, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy
| | - Davide La Tegola
- Department of Mental Health and Addiction, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy
| | - Letizia Maria Affaticati
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Francesca Manzo
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Francesca Cella
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Alberto Scalia
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Enrico Capuzzi
- Department of Mental Health and Addiction, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy
| | - Monica Nicastro
- Department of Mental Health and Addiction, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy
| | - Fabrizia Colmegna
- Department of Mental Health and Addiction, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy
| | - Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Massimo Clerici
- Department of Mental Health and Addiction, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 38, 20900 Monza, Italy
| | - Antonios Dakanalis
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 38, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-3755-651904
| |
Collapse
|
2
|
Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ 2022; 13:12. [PMID: 35337376 PMCID: PMC8949832 DOI: 10.1186/s13293-022-00422-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut–brain axis. It is increasingly evident that sex–microbiota–brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota–brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders. The human microbiome is a unique set of organisms affecting health via the gut–brain axis. Neuropsychiatric disorders, eating disorders, neurodevelopmental disorders, and neurodegenerative disorders are regulated by the microbiota–gut–brain axis in a sex-specific manner. Understanding the role of the microbiota–gut–brain axis and its sex differences in various diseases can lead to better therapeutic methods.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Roubalova R, Prochazkova P, Dvorak J, Hill M, Papezova H, Kreisinger J, Bulant J, Lambertova A, Holanova P, Bilej M, Tlaskalova-Hogenova H. Altered Serum Immunological and Biochemical Parameters and Microbiota Composition in Patients With AN During Realimentation. Front Nutr 2021; 8:680870. [PMID: 34409061 PMCID: PMC8365021 DOI: 10.3389/fnut.2021.680870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Anorexia nervosa (AN) is a life-threatening psychiatric disorder with not well-described pathogenesis. Besides the genetic and sociological factors, autoimmunity is also considered to take part in AN pathogenesis. We evaluated general serological factors showing the physiological state of 59 patients with AN at hospital admission and their discharge. We detected the altered levels of some general biochemical and immunological parameters. We also detected decreased levels of appetite-regulating alpha-melanocyte stimulating hormone (α-MSH) in patients at hospital admission. Moreover, elevated anti-α-MSH IgM levels and decreased anti-α-MSH IgA levels were observed in patients with AN. Therefore, we analyzed the gut microbiota composition with special focus on α-MSH antigen-mimetic containing microbes from the Enterobacteriaceae family. We correlated gut bacterial composition with anti-α-MSH Ig levels and detected decreasing IgG levels with increasing alpha diversity. The upregulation of pro-inflammatory cytokines IL-6, IL-17, and TNF-α were detected in patients with AN both prior and after hospitalization. We also evaluated the treatment outcome and improvement was observed in the majority of patients with AN. We provide new data about various serum biochemical parameters and their changes during the patients' hospitalization, with emphasis on the immune system, and its possible participation in AN pathogenesis.
Collapse
Affiliation(s)
- Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Hill
- Department of Steroids and Proteohormones, Institute of Endocrinology, Prague, Czechia
| | - Hana Papezova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Josef Bulant
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Alena Lambertova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Petra Holanova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Chandra S, Alam MT, Dey J, Sasidharan BCP, Ray U, Srivastava AK, Gandhi S, Tripathi PP. Healthy Gut, Healthy Brain: The Gut Microbiome in Neurodegenerative Disorders. Curr Top Med Chem 2021; 20:1142-1153. [PMID: 32282304 DOI: 10.2174/1568026620666200413091101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington's disease (HD). OBJECTIVE We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. METHODS In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. RESULTS In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. CONCLUSION We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.
Collapse
Affiliation(s)
- Sreyashi Chandra
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Tanjim Alam
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India
| | - Jhilik Dey
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baby C Pulikkaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Kochi, India.,Inter-University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology (CUSAT), Kochi, India
| | - Upasana Ray
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit K Srivastava
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, India
| | - Prem P Tripathi
- CSIR-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata 700032, India.,IICB-Translational Research Unit of Excellence (IICB-TRUE), Kolkata 700091, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Subthreshold Autism Spectrum in a Patient with Anorexia Nervosa and Behçet's Syndrome. Case Rep Psychiatry 2020; 2020:6703979. [PMID: 32607270 PMCID: PMC7313151 DOI: 10.1155/2020/6703979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Recently, increasing research stressed the presence of subthreshold autistic traits in patients with other psychiatric conditions. In this framework, a significant relationship between anorexia nervosa (AN) and the autism spectrum has been frequently reported, in particular among female samples, to the point that AN has been hypothesized to be a female phenotype of autism spectrum disorder (ASD). On the other hand, among subjects with ASD has been reported a higher prevalence of immune diseases and altered immune functions. While these reports seem to support an association between neurodevelopmental and immune system alterations in ASD, the relationship between the immune system and the broader autism spectrum, including its subthreshold manifestations, remains poorly investigated. In this report, we described the presence of autistic traits in a male inpatient with AN and separation anxiety disorder, who also show a diagnosis of Behçet's syndrome (BS). This case seems to further stress the association between AN and the autism spectrum, which may not be limited to the female gender. Moreover, it further suggests a deeper link between neurodevelopmental and immune system alterations. Implications are discussed in light of the more recent neurobiological and psychopathological hypothesis about the autism spectrum.
Collapse
|