1
|
Srisupundit K, Luewan S, Tongsong T. Prenatal Diagnosis of Fetal Heart Failure. Diagnostics (Basel) 2023; 13:diagnostics13040779. [PMID: 36832267 PMCID: PMC9955344 DOI: 10.3390/diagnostics13040779] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Fetal heart failure (FHF) is a condition of inability of the fetal heart to deliver adequate blood flow for tissue perfusion in various organs, especially the brain, heart, liver and kidneys. FHF is associated with inadequate cardiac output, which is commonly encountered as the final outcome of several disorders and may lead to intrauterine fetal death or severe morbidity. Fetal echocardiography plays an important role in diagnosis of FHF as well as of the underlying causes. The main findings supporting the diagnosis of FHF include various signs of cardiac dysfunction, such as cardiomegaly, poor contractility, low cardiac output, increased central venous pressures, hydropic signs, and the findings of specific underlying disorders. This review will present a summary of the pathophysiology of fetal cardiac failure and practical points in fetal echocardiography for diagnosis of FHF, focusing on essential diagnostic techniques used in daily practice for evaluation of fetal cardiac function, such as myocardial performance index, arterial and systemic venous Doppler waveforms, shortening fraction, and cardiovascular profile score (CVPs), a combination of five echocardiographic markers indicative of fetal cardiovascular health. The common causes of FHF are reviewed and updated in detail, including fetal dysrhythmia, fetal anemia (e.g., alpha-thalassemia, parvovirus B19 infection, and twin anemia-polycythemia sequence), non-anemic volume load (e.g., twin-to-twin transfusion, arteriovenous malformations, and sacrococcygeal teratoma, etc.), increased afterload (intrauterine growth restriction and outflow tract obstruction, such as critical aortic stenosis), intrinsic myocardial disease (cardiomyopathies), congenital heart defects (Ebstein anomaly, hypoplastic heart, pulmonary stenosis with intact interventricular septum, etc.) and external cardiac compression. Understanding the pathophysiology and clinical courses of various etiologies of FHF can help physicians make prenatal diagnoses and serve as a guide for counseling, surveillance and management.
Collapse
|
2
|
The Genomics of Congenital Diaphragmatic Hernia: A 10-Year Retrospective Review. J Pediatr 2022; 248:108-113.e2. [PMID: 35430246 DOI: 10.1016/j.jpeds.2022.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/26/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate genetic testing use in infants with congenital diaphragmatic hernia (CDH) over the past decade to better inform future practices and individualize prognostication and management. STUDY DESIGN A retrospective cohort study was performed of all infants with CDH enrolled in the Pulmonary Hypoplasia Program at Children's Hospital of Philadelphia, born between January 2011 and February 2021. For each infant, demographic information, prenatal and postnatal history, and genetic testing were reviewed. RESULTS The charts of 411 infants were analyzed. Overall, 22% (n = 89) were complex/syndromic and 78% (n = 322) were isolated/nonsyndromic. Mortality was significantly higher in complex/syndromic infants (P < .001) and in infants with diagnostic genetic testing (P < .001). Microarray was diagnostic in 9% (n = 34/399) and exome sequencing was diagnostic in 38% (n = 15/39). Genetic testing was diagnostic in 57% (n = 51/89) of complex/syndromic infants, but in only 2% of isolated/nonsyndromic infants (n = 8/322). Overall, genetic testing was diagnostic in 14% (n = 56). CONCLUSIONS The high diagnostic rate in this cohort highlights the utility of comprehensive genetic testing in infants with CDH. However, 43% of complex/syndromic and 98% of isolated/nonsyndromic infants do not have a genetic etiology identified. This finding underscores the need for additional genetic and genomic studies (eg, whole genome, RNA sequencing) to identify novel genes and mutational mechanisms (single genes, regulatory elements, complex traits) that will allow for improved diagnostic rates and ultimately individualized management of infants with CDH.
Collapse
|
3
|
Amodeo I, Borzani I, Raffaeli G, Persico N, Amelio GS, Gulden S, Colnaghi M, Villamor E, Mosca F, Cavallaro G. The role of magnetic resonance imaging in the diagnosis and prognostic evaluation of fetuses with congenital diaphragmatic hernia. Eur J Pediatr 2022; 181:3243-3257. [PMID: 35794403 PMCID: PMC9395465 DOI: 10.1007/s00431-022-04540-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
UNLABELLED In recent years, magnetic resonance imaging (MRI) has largely increased our knowledge and predictive accuracy of congenital diaphragmatic hernia (CDH) in the fetus. Thanks to its technical advantages, better anatomical definition, and superiority in fetal lung volume estimation, fetal MRI has been demonstrated to be superior to 2D and 3D ultrasound alone in CDH diagnosis and outcome prediction. This is of crucial importance for prenatal counseling, risk stratification, and decision-making approach. Furthermore, several quantitative and qualitative parameters can be evaluated simultaneously, which have been associated with survival, postnatal course severity, and long-term morbidity. CONCLUSION Fetal MRI will further strengthen its role in the near future, but it is necessary to reach a consensus on indications, methodology, and data interpretation. In addition, it is required data integration from different imaging modalities and clinical courses, especially for predicting postnatal pulmonary hypertension. This would lead to a comprehensive prognostic assessment. WHAT IS KNOWN • MRI plays a key role in evaluating the fetal lung in patients with CDH. • Prognostic assessment of CDH is challenging, and advanced imaging is crucial for a complete prenatal assessment and counseling. WHAT IS NEW • Fetal MRI has strengthened its role over ultrasound due to its technical advantages, better anatomical definition, superior fetal lung volume estimation, and outcome prediction. • Imaging and clinical data integration is the most desirable strategy and may provide new MRI applications and future research opportunities.
Collapse
Affiliation(s)
- Ilaria Amodeo
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Irene Borzani
- grid.414818.00000 0004 1757 8749Pediatric Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Genny Raffaeli
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Nicola Persico
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy ,grid.414818.00000 0004 1757 8749Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Simeone Amelio
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Silvia Gulden
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Mariarosa Colnaghi
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy
| | - Eduardo Villamor
- grid.412966.e0000 0004 0480 1382Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht University Medical Center, University of Maastricht, MUMC+), Maastricht, the Netherlands
| | - Fabio Mosca
- grid.414818.00000 0004 1757 8749Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Della Commenda 12, 20122, Milan, Italy.
| |
Collapse
|
4
|
Coughlin MA, Gupta VS, Ebanks AH, Harting MT, Lally KP. Incidence and outcomes of patients with congenital diaphragmatic hernia and pulmonary sequestration. J Pediatr Surg 2021; 56:1126-1129. [PMID: 33752909 DOI: 10.1016/j.jpedsurg.2021.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Bronchopulmonary sequestration (BPS) has long been identified in patients with congenital diaphragmatic hernia (CDH), however the reported incidence in the literature varies widely and is not based on large series. METHODS Version 4 of the Congenital Diaphragmatic Hernia Study Group (CDHSG) included questions specifically identifying BPS-associated cases. The data were prospectively collected between 2015 and 2020. Clinical characteristics and outcomes for CDH+BPS patients were compared to patients without BPS using univariate and multiple regression analyses. RESULTS Out of 2118 total patients, 72 had a pulmonary sequestration (3.4%). The amount of CDH+BPS with high-risk (CDHSG type C and D) defects was significantly greater than those without BPS (68.0% vs 49.3%, respectively; p = 0.001). The need for ECLS (35/72, 48.6%) and overall mortality (21/72, 29.2%) was significantly higher in CDH+BPS. When corrected for hernia size, cardiac and chromosomal anomalies, the need for ECLS (OR 2.2, p = 0.004) and mortality (OR 2.0, p = 0.015) was significantly greater in CDH+BPS. CONCLUSIONS This is the largest series to look at the incidence of BPS in children with CDH. They are associated with larger defect sizes, a greater need for ECLS and higher mortality than those patients without BPS.
Collapse
Affiliation(s)
- Megan A Coughlin
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.258, Houston, TX 77030, United States.
| | - Vikas S Gupta
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.258, Houston, TX 77030, United States
| | - Ashley H Ebanks
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.258, Houston, TX 77030, United States
| | - Matthew T Harting
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.258, Houston, TX 77030, United States
| | - Kevin P Lally
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.258, Houston, TX 77030, United States
| | -
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.258, Houston, TX 77030, United States
| |
Collapse
|