1
|
Zhao YL, Yi HY, Baba SS, Guo YX, Yuan XC, Hou XM, Liang LL, Huo FQ. Activation of 5-HT 6 Receptors in the Ventrolateral Orbital Cortex Produces Anti-Anxiodepressive Effects in a Rat Model of Neuropathic Pain. Mol Neurobiol 2024:10.1007/s12035-024-04314-1. [PMID: 38963532 DOI: 10.1007/s12035-024-04314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
The comorbidity of anxiety and depression frequently occurs in patients with neuropathic pain. The ventrolateral orbital cortex (VLO) plays a critical role in mediating neuropathic pain and anxiodepression in rodents. Previous studies suggested that 5-HT6 receptors in the VLO are involved in neuropathic pain. Strong evidence supports a close link between 5-HT6 receptors and affective disorders such as depression and anxiety disorders. However, it remains unclear whether the 5-HT6 receptors in the VLO are involved in neuropathic pain-induced anxiodepression. Using a rat neuropathic pain model of spared nerve injury (SNI), we demonstrated that rats exhibited significant anxiodepression-like behaviors and the expression of VLO 5-HT6 receptors obviously decreased four weeks after SNI surgery. Microinjection of the 5-HT6 receptor agonist EMD-386088 into the VLO or overexpression of VLO 5-HT6 receptors alleviated anxiodepression-like behaviors. These effects were blocked by pre-microinjection of a selective 5-HT6 receptor antagonist (SB-258585) or inhibitors of AC (SQ-22536), PKA (H89), and MEK1/2 (U0126) respectively. Meanwhile, the expression of p-ERK, p-CREB, and BDNF in the VLO decreased four weeks after SNI surgery. Furthermore, administration of EMD-386088 upregulated the expression of BDNF, p-ERK, and p-CREB in the VLO of SNI rats, which were reversed by pre-injection of SB-258585. These findings suggest that activating 5-HT6 receptors in the VLO has anti-anxiodepressive effects in rats with neuropathic pain via activating AC-cAMP-PKA-MERK-CREB-BDNF signaling pathway. Accordingly, 5-HT6 receptor in the VLO could be a potential target for the treatment of the comorbidity of neuropathic pain and anxiodepression.
Collapse
Affiliation(s)
- Yu-Long Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Hui-Yuan Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Sani Sa'idu Baba
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yi-Xiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiao-Cui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xue-Mei Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Ling-Li Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Sgambato V. The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders. Int J Mol Sci 2024; 25:5245. [PMID: 38791281 PMCID: PMC11121119 DOI: 10.3390/ijms25105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, particular attention has been paid to the serotonin 4 receptor, which is well expressed in the brain, but also peripherally in various organs. The cerebral distribution of this receptor is well conserved across species, with high densities in the basal ganglia, where they are expressed by GABAergic neurons. The 5-HT4 receptor is also present in the cerebral cortex, hippocampus, and amygdala, where they are carried by glutamatergic or cholinergic neurons. Outside the central nervous system, the 5-HT4 receptor is notably expressed in the gastrointestinal tract. The wide distribution of the 5-HT4 receptor undoubtedly contributes to its involvement in a plethora of functions. In addition, the modulation of this receptor influences the release of serotonin, but also the release of other neurotransmitters such as acetylcholine and dopamine. This is a considerable asset, as the modulation of the 5-HT4 receptor can therefore play a direct or indirect beneficial role in various disorders. One of the main advantages of this receptor is that it mediates a much faster antidepressant and anxiolytic action than classical selective serotonin reuptake inhibitors. Another major benefit of the 5-HT4 receptor is that its activation enhances cognitive performance, probably via the release of acetylcholine. The expression of the 5-HT4 receptor is also altered in various eating disorders, and its activation by the 5-HT4 agonist negatively regulates food intake. Additionally, although the cerebral expression of this receptor is modified in certain movement-related disorders, it is still yet to be determined whether this receptor plays a key role in their pathophysiology. Finally, there is no longer any need to demonstrate the value of 5-HT4 receptor agonists in the pharmacological management of gastrointestinal disorders.
Collapse
Affiliation(s)
- Véronique Sgambato
- Institut des Sciences Cognitives Marc Jeannerod (ISCMJ), Unité Mixte de Recherche 5229 du Centre National de la Recherche Scientifique (CNRS), 69675 Bron, France; ; Tel.: +33-4379-11249
- UFR Biosciences, Université de Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
3
|
Samanci B, Tan S, Michielse S, Kuijf ML, Temel Y. The habenula in Parkinson's disease: Anatomy, function, and implications for mood disorders - A narrative review. J Chem Neuroanat 2024; 136:102392. [PMID: 38237746 DOI: 10.1016/j.jchemneu.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Parkinson's disease (PD), a widespread neurodegenerative disorder, often coexists with mood disorders. Degeneration of serotonergic neurons in brainstem raphe nuclei have been linked to depression and anxiety. Additionally, the locus coeruleus and its noradrenergic neurons are among the first areas to degenerate in PD and contribute to stress, emotional memory, motor, sensory, and autonomic symptoms. Another brain region of interest is habenula, which is especially related to anti-reward processing, and its function has recently been linked to PD and to mood-related symptoms. There are several neuroimaging studies that investigated role of the habenula in mood disorders. Differences in habenular size and hemispheric symmetry were found in healthy controls compared to individuals with mood disorders. The lateral habenula, as a link between the dopaminergic and serotonergic systems, is thought to contribute to depressive symptoms in PD. However, there is only one imaging study about role of habenula in mood disorders in PD, although the relationship between PD and mood disorders is known. There is little known about habenula pathology in PD but given these observations, the question arises whether habenular dysfunction could play a role in PD and the development of PD-related mood disorders. In this review, we evaluate neuroimaging techniques and studies that investigated the habenula in the context of PD and mood disorders. Future studies are important to understand habenula's role in PD patients with mood disorders. Thus, new potential diagnostic and treatment opportunities would be found for mood disorders in PD.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
4
|
Boi L, Fisone G. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:119-186. [PMID: 38341228 DOI: 10.1016/bs.irn.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Affective neuropsychiatric disorders such as depression, anxiety and apathy are among the most frequent non-motor symptoms observed in people with Parkinson's disease (PD). These conditions often emerge during the prodromal phase of the disease and are generally considered to result from neurodegenerative processes in meso-corticolimbic structures, occurring in parallel to the loss of nigrostriatal dopaminergic neurons. Depression, anxiety, and apathy are often treated with conventional medications, including selective serotonin reuptake inhibitors, tricyclic antidepressants, and dopaminergic agonists. The ability of these pharmacological interventions to consistently counteract such neuropsychiatric symptoms in PD is still relatively limited and the development of reliable experimental models represents an important tool to identify more effective treatments. This chapter provides information on rodent models of PD utilized to study these affective neuropsychiatric symptoms. Neurotoxin-based and genetic models are discussed, together with the main behavioral tests utilized to identify depression- and anxiety-like behaviors, anhedonia, and apathy. The ability of various therapeutic approaches to counteract the symptoms observed in the various models is also reviewed.
Collapse
Affiliation(s)
- Laura Boi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Hayley S, Vahid-Ansari F, Sun H, Albert PR. Mood disturbances in Parkinson's disease: From prodromal origins to application of animal models. Neurobiol Dis 2023; 181:106115. [PMID: 37037299 DOI: 10.1016/j.nbd.2023.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Parkinson's disease (PD) is a complex illness with a constellation of environmental insults and genetic vulnerabilities being implicated. Strikingly, many studies only focus on the cardinal motor symptoms of the disease and fail to appreciate the major non-motor features which typically occur early in the disease process and are debilitating. Common comorbid psychiatric features, notably clinical depression, as well as anxiety and sleep disorders are thought to emerge before the onset of prominent motor deficits. In this review, we will delve into the prodromal stage of PD and how early neuropsychiatric pathology might unfold, followed by later motor disturbances. It is also of interest to discuss how animal models of PD capture the complexity of the illness, including depressive-like characteristics along with motor impairment. It remains to be determined how the underlying PD disease processes contributes to such comorbidity. But some of the environmental toxicants and microbial pathogens implicated in PD might instigate pro-inflammatory effects favoring α-synuclein accumulation and damage to brainstem neurons fueling the evolution of mood disturbances. We posit that comprehensive animal-based research approaches are needed to capture the complexity and time-dependent nature of the primary and co-morbid symptoms. This will allow for the possibility of early intervention with more novel and targeted treatments that fit with not only individual patient variability, but also with changes that occur over time with the evolution of the disease.
Collapse
Affiliation(s)
- S Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada.
| | - F Vahid-Ansari
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - H Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| | - P R Albert
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Canada
| |
Collapse
|
6
|
Korlatowicz A, Pabian P, Solich J, Kolasa M, Latocha K, Dziedzicka-Wasylewska M, Faron-Górecka A. Habenula as a Possible Target for Treatment-Resistant Depression Phenotype in Wistar Kyoto Rats. Mol Neurobiol 2023; 60:643-654. [PMID: 36344870 PMCID: PMC9849162 DOI: 10.1007/s12035-022-03103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
The mechanisms of treatment-resistant depression (TRD) are not clear and are difficult to study. An animal model resembling human TRD is the Wistar Kyoto rat strain. In the present study, we focused on selecting miRNAs that differentiate rats of the WKY strain from Wistar Han (WIS) rats in two divisions of the habenula, the lateral and medial (LHb and MHb, respectively). Based on our preliminary study and literature survey, we identified 32 miRNAs that could be potentially regulated in the habenula. Six miRNAs significantly differentiated WKY rats from WIS rats within the MHb, and three significantly differentiated WKY from WIS rats within the LHb. Then, we selected relevant transcripts regulated by those miRNAs, and their expression in the habenular nuclei was investigated. For mRNAs that differentiated WKY rats from WIS rats in the MHb (Cdkn1c, Htr7, Kcnj9, and Slc12a5), their lower expression correlated with a higher level of relevant miRNAs. In the LHb, eight mRNAs significantly differentiated WKY from WIS rats (upregulated Htr4, Drd2, Kcnj5, and Sstr4 and downregulated Htr2a, Htr7, Elk4, and Slc12a5). These data indicate that several important miRNAs are expressed in the habenula, which differentiates WKY rats from WIS rats and in turn correlates with alterations in the expression of target transcripts. Of particular note are two genes whose expression is altered in WKY rats in both LHb and MHb: Slc12a5 and Htr7. Regulation of KCC2 via the 5-HT7 receptor may be a potential target for the treatment of TRD.
Collapse
Affiliation(s)
- Agata Korlatowicz
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Paulina Pabian
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Latocha
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
7
|
Mou YK, Guan LN, Yao XY, Wang JH, Song XY, Ji YQ, Ren C, Wei SZ. Application of Neurotoxin-Induced Animal Models in the Study of Parkinson's Disease-Related Depression: Profile and Proposal. Front Aging Neurosci 2022; 14:890512. [PMID: 35645772 PMCID: PMC9136050 DOI: 10.3389/fnagi.2022.890512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 01/17/2023] Open
Abstract
Depression can be a non-motor symptom, a risk factor, and even a co-morbidity of Parkinson's disease (PD). In either case, depression seriously affects the quality of life of PD patients. Unfortunately, at present, a large number of clinical and basic studies focused on the pathophysiological mechanism of PD and the prevention and treatment of motor symptoms. Although there has been increasing attention to PD-related depression, it is difficult to achieve early detection and early intervention, because the clinical guidelines mostly refer to depression developed after or accompanied by motor impairments. Why is there such a dilemma? This is because there has been no suitable preclinical animal model for studying the relationship between depression and PD, and the assessment of depressive behavior in PD preclinical models is as well a very challenging task since it is not free from the confounding from the motor impairment. As a common method to simulate PD symptoms, neurotoxin-induced PD models have been widely used. Studies have found that neurotoxin-induced PD model animals could exhibit depression-like behaviors, which sometimes manifested earlier than motor impairments. Therefore, there have been attempts to establish the PD-related depression model by neurotoxin induction. However, due to a lack of unified protocol, the reported results were diverse. For the purpose of further promoting the improvement and optimization of the animal models and the study of PD-related depression, we reviewed the establishment and evaluation strategies of the current animal models of PD-related depression based on both the existing literature and our own research experience, and discussed the possible mechanism and interventions, in order to provide a reference for future research in this area.
Collapse
Affiliation(s)
- Ya-Kui Mou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Li-Na Guan
- Department of Neurosurgical Intensive Care Unit, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Jia-Hui Wang
- Department of Central Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yu Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yong-Qiang Ji
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
8
|
The GG genotype of the serotonin 4 receptor genetic polymorphism, rs1345697, is associated with lower remission rates after antidepressant treatment: Findings from the METADAP cohort. J Affect Disord 2022; 299:335-343. [PMID: 34906639 DOI: 10.1016/j.jad.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pharmacological studies have yielded valuable insights into the role of the serotonin 4 receptor (HTR4) in major depressive episodes (MDE) and response to antidepressant drugs (AD). A genetic association has been shown between HTR4 and susceptibility to mood disorders. Our study aims at assessing the association between the HTR4 genetic polymorphism, rs1345697, and improvement in depressive symptoms and remission after antidepressant treatment in MDE patients. METHODS 492 depressed patients from the METADAP cohort were treated prospectively for 6 months with ADs. The clinical outcomes according to HTR4 rs1345697 were compared after 1 (M1), 3 (M3), and 6 (M6) months of treatment. Mixed-effects logistic regression and adjusted linear models assessed the association between rs1345697 and 17-item Hamilton Depression Rating Scale (HDRS) score improvement and response/remission. RESULTS Over the 6 months of treatment, mixed-effects regressions showed lower improvements in HDRS scores (Coefficient=1.52; Confident Interval (CI) 95% [0.37-2.67]; p = 0.009) and lower remission rates (Odds Ratio=2.0; CI95% [1.0-4.1]; p = 0.05) in GG homozygous patients as compared to allele A carriers. LIMITATIONS The major limitations of our study are the uncertainty of the rs1345697 effect on HTR4 function, the substantial drop-out rate, and the fact that analysis is not based on randomization between polymorphism groups. CONCLUSIONS In our study, patients who were homozygous carriers of the variant G of the HTR4 rs1345697 had lower depressive symptoms improvement and 2-fold lower remission rates after antidepressant treatment as compared to allele A carriers. Randomization study should be done to confirm these results.
Collapse
|
9
|
Zhang GM, Wu HY, Cui WQ, Peng W. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence. Front Psychiatry 2022; 13:1043846. [PMID: 36386995 PMCID: PMC9649931 DOI: 10.3389/fpsyt.2022.1043846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in recent decades, knowledge of the pathophysiology of depression in neural circuits remains limited. Recently, the lateral habenula (LHb) has been extensively reported to undergo a series of adaptive changes at multiple levels during the depression state. As a crucial relay in brain networks associated with emotion regulation, LHb receives excitatory or inhibitory projections from upstream brain regions related to stress and cognition and interacts with brain regions involved in emotion regulation. A series of pathological alterations induced by aberrant inputs cause abnormal function of the LHb, resulting in dysregulation of mood and motivation, which present with depressive-like phenotypes in rodents. Herein, we systematically combed advances from rodents, summarized changes in the LHb and related neural circuits in depression, and attempted to analyze the intrinsic logical relationship among these pathological alterations. We expect that this summary will greatly enhance our understanding of the pathological processes of depression. This is advantageous for fostering the understanding and screening of potential antidepressant targets against LHb.
Collapse
Affiliation(s)
- Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Hashemi-Firouzi N, Shahidi S, Soleimani Asl S. Chronic stimulation of the serotonergic 5-HT4 receptor modulates amyloid-beta-related impairments in synaptic plasticity and memory deficits in male rats. Brain Res 2021; 1773:147701. [PMID: 34695393 DOI: 10.1016/j.brainres.2021.147701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory decline and impaired hippocampal synaptic plasticity. The serotonin 5-HT4 receptor is involved in learning and memory processes. This study explored the effects of chronic stimulation of 5-HT4R on cognition, memory, long-term potentiation (LTP), paired-pulse ratio (PPR), and neuronal apoptosis in a rat model of amyloid-beta (Aβ)-induced AD. Thirty-five male Wistar rats were randomly divided into three groups as follows: the sham, Aβ, and Aβ + BIMU8 groups. Aβ (6 µg/µl) was administrated by intracerebroventricular (icv) injection. The animals were treated with BIMU8 (1 μg/μL, ICV) as a 5-HT4R agonist for 30 days. Memory and behavioral changes were assessed by the passive avoidance learning, novel object recognition, open field, and elevated plus maze tests. Hippocampal synaptic plasticity was evaluated in the dentate gyrus (DG) in response to the stimulation applied to the perforant pathway. Furthermore, neuronal apoptosis was measured in the hippocampus. Data were analyzed by SPSS version 19 using one-way ANOVA, followed by Tukey's post hoc test. Aβ induced memory deficits and neuronal loss and inhibited LTP induction. Aβ also increased the normalized PPR. BIMU8 enhanced the slope of the field excitatory postsynaptic potential in LTP and improved cognition behavior. Paired-pulse inhibition or facilitation was not affected by LTP induction in Aβ animals receiving the BIMU8. It can be concluded that the stimulation of the 5-HT4 receptor modulated the Aβ-induced cognition and memory deficits, probably via a decrease in the hippocampal apoptotic neurons and an improvement in the hippocampal synaptic functions without involving its inhibitory interneurons.
Collapse
Affiliation(s)
- Nasrin Hashemi-Firouzi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Wang JW, Gao F, Wang ZL, Wang XC, Yang J, Ma BR, Wang HS, Xie W, Guo Y, Zhang L. Activation and blockade of dorsal hippocampal serotonin4 receptors produce antidepressant effects in the hemiparkinsonian rats. Brain Res 2021; 1761:147426. [PMID: 33737063 DOI: 10.1016/j.brainres.2021.147426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Depression is a common non-motor symptom in Parkinson's disease (PD). Although serotonin4 (5-HT4) receptors and the dorsal hippocampus (dHIP) are regarded to be involved in the depression, the mechanism underlying the effects of 5-HT4 receptors in the dHIP on PD-related depression should be further investigated. In the present study, unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) increased the expressions of 5-HT4 receptors and its co-localization with glutamate neurons in the CA1, CA3 and dentate gyrus. Additionally, MFB lesions induced depressive-like behaviors in the sucrose preference and forced swimming tests. The activation or blockade of dHIP 5-HT4 receptors produced antidepressant effects in the MFB lesioned rats but not in control rats. Neurochemical results showed no changes of monoamines levels in the striatum, medial prefrontal cortex (mPFC), lateral habenula (LHb), and ventral hippocampus (vHIP) in control rats after intra-dHIP injection of 5-HT4 receptors agonist BIMU8 (26 μg/rat), antagonist GR 113808 (16 μg/rat) or GR 113808/BIMU8 (26 μg/16 μg/rat). But in the lesioned rats, BIMU8, GR113808 or GR 113808/BIMU8 injection increased dopamine levels in the striatum, mPFC, LHb, and vHIP and increased 5-HT levels in the LHb. Intra-dHIP injection of GR 113808 or GR 113808/BIMU8 also increased the noradrenaline levels in the mPFC and LHb. All these results suggest that activation or blockade dHIP 5-HT4 receptors produce antidepressant effects in the hemiparkinsonian rats, which may be related to the upregulation of 5-HT4 receptors in the dHIP and the changes of monoamines in the limbic and limbic-related brain regions.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Feng Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhao-Long Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Chen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Bo-Rui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hui-Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China.
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; The Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
12
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|