1
|
van Dam-Nolen DH, van Egmond NC, Koudstaal PJ, van der Lugt A, Bos D. Sex Differences in Carotid Atherosclerosis: A Systematic Review and Meta-Analysis. Stroke 2023; 54:315-326. [PMID: 36444718 PMCID: PMC9855762 DOI: 10.1161/strokeaha.122.041046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Over the last decades, several individual studies on sex differences in carotid atherosclerosis have been performed covering a wide range of plaque characteristics and including different populations. This systematic review and meta-analysis aims to summarize previously reported results on sex differences in carotid atherosclerosis and present a roadmap explaining next steps needed for implementing this knowledge in clinical practice. METHODS We systematically searched PubMed, Embase, Web of Science, Cochrane Central, and Google Scholar for eligible studies including both male and female participants reporting prevalence of imaging characteristics of carotid atherosclerosis and meta-analyzed these studies. Studies had to report at least the following: (1) calcifications; (2) lipid-rich necrotic core; (3) intraplaque hemorrhage; (4) thin-or-ruptured fibrous cap; (5) plaque ulceration; (6) degree of stenosis; (7) plaque size; or (8) plaque inflammation. We prespecified which imaging modalities had to be used per plaque characteristic and excluded ultrasonography. RESULTS We included 42 articles in our meta-analyses (ranging from 2 through 23 articles per plaque characteristic). Men had more frequently a larger plaque compared to women and, moreover, had more often plaques with calcifications (odds ratio=1.57 [95% CI, 1.23-2.02]), lipid-rich necrotic core (odds ratio=1.87 [95% CI, 1.36-2.57]), and intraplaque hemorrhage (odds ratio=2.52 [95% CI, 1.74-3.66]), or an ulcerated plaque (1.81 [95% CI, 1.30-2.51]). Furthermore, we found more pronounced sex differences for lipid-rich necrotic core in symptomatic opposed to asymptomatic participants. CONCLUSIONS In this systematic review and meta-analysis, we demonstrate convincing evidence for sex differences in carotid atherosclerosis. All kinds of plaque features-plaque size, composition, and morphology-were more common or larger in men compared to women. Our results highlight that sex is an important variable to include in both study design and clinical-decision making. Further investigation of sex-specific stroke risks with regard to plaque composition is warranted.
Collapse
Affiliation(s)
- Dianne H.K. van Dam-Nolen
- Department of Radiology and Nuclear Medicine (D.H.K.v.D.-N., N.C.M.v.E., A.v.d.L., D.B.), Erasmus University Medical Center Rotterdam, the Netherlands.,Department of Neurology (D.H.K.v.D.-N., P.J.K.), Erasmus University Medical Center Rotterdam, the Netherlands
| | - Nina C.M. van Egmond
- Department of Radiology and Nuclear Medicine (D.H.K.v.D.-N., N.C.M.v.E., A.v.d.L., D.B.), Erasmus University Medical Center Rotterdam, the Netherlands
| | - Peter J. Koudstaal
- Department of Neurology (D.H.K.v.D.-N., P.J.K.), Erasmus University Medical Center Rotterdam, the Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine (D.H.K.v.D.-N., N.C.M.v.E., A.v.d.L., D.B.), Erasmus University Medical Center Rotterdam, the Netherlands
| | - Daniel Bos
- Department of Radiology and Nuclear Medicine (D.H.K.v.D.-N., N.C.M.v.E., A.v.d.L., D.B.), Erasmus University Medical Center Rotterdam, the Netherlands.,the Department of Epidemiology (D.B.), Erasmus University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
2
|
Zhang S, Gao L, Kang B, Yu X, Zhang R, Wang X. Radiomics assessment of carotid intraplaque hemorrhage: detecting the vulnerable patients. Insights Imaging 2022; 13:200. [PMID: 36538100 PMCID: PMC9768061 DOI: 10.1186/s13244-022-01324-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Intraplaque hemorrhage (IPH), one of the key features of vulnerable plaques, has been shown to be associated with increased risk of stroke. The aim is to develop and validate a CT-based radiomics nomogram incorporating clinical factors and radiomics signature for the detection of IPH in carotid arteries. METHODS This retrospective study analyzed the patients with carotid plaques on CTA from January 2013 to January 2021 at two different institutions. Radiomics features were extracted from CTA images. Demographics and CT characteristics were evaluated to build a clinical factor model. A radiomics signature was constructed by the least absolute shrinkage and selection operator method. A radiomics nomogram combining the radiomics signature and independent clinical factors was constructed. The area under curves of three models were calculated by receiver operating characteristic analysis. RESULTS A total of 46 patients (mean age, 60.7 years ± 10.4 [standard deviation]; 36 men) with 106 carotid plaques were in the training set, and 18 patients (mean age, 61.4 years ± 10.1; 13 men) with 38 carotid plaques were in the external test sets. Stenosis was the independent clinical factor. Eight features were used to build the radiomics signature. The area under the curve (AUC) of the radiomics nomogram was significantly higher than that of the clinical factor model in both the training (p = 0.032) and external test (p = 0.039) sets. CONCLUSIONS A CT-based radiomics nomogram showed satisfactory performance in distinguishing carotid plaques with and without intraplaque hemorrhage.
Collapse
Affiliation(s)
- Shuai Zhang
- grid.410638.80000 0000 8910 6733The School of Medicine, Shandong First Medical University, No. 6699, Qingdao Road, Huaiyin District, Jinan, China
| | - Lin Gao
- grid.410638.80000 0000 8910 6733The School of Medicine, Shandong First Medical University, No. 6699, Qingdao Road, Huaiyin District, Jinan, China
| | - Bing Kang
- grid.460018.b0000 0004 1769 9639Department of Radiology, Shandong Provincial Hospital Affliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 China
| | - Xinxin Yu
- grid.460018.b0000 0004 1769 9639Department of Radiology, Shandong Provincial Hospital Affliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 China
| | - Ran Zhang
- Huiying Medical Technology Co. Ltd., 66 Xixiaokou Road, Haidian District, Beijing, China
| | - Ximing Wang
- grid.460018.b0000 0004 1769 9639Department of Radiology, Shandong Provincial Hospital Affliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 China
| |
Collapse
|
3
|
Habib S, Hafeez MS, Yuo TH, Subramaniam K. The Unstable Carotid Plaque. Anesthesiol Clin 2022; 40:737-749. [PMID: 36328626 DOI: 10.1016/j.anclin.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carotid revascularization is performed to prevent cerebrovascular events in patients with symptomatic (>50%) and asymptomatic high degree (>70%) carotid stenosis. As this operation carries significant risks for perioperative stroke, careful selection of patients who will benefit from the procedure is essential. Certain plaque characteristics, including texture, are associated with increased tendency for rupture and can be used to identify high-risk patients. Medical therapy, carotid endarterectomy, and carotid stenting are the mainstays for patient management. With careful selection of patients, all anesthesia techniques (general anesthesia, monitored anesthesia care, and regional anesthesia) can be used safely for these revascularization procedures.
Collapse
Affiliation(s)
- Salim Habib
- Department of Vascular Surgery, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Division of Vascular Surgery, Department of Surgery, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15143, USA
| | - Muhammad Saad Hafeez
- Department of Vascular Surgery, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Division of Vascular Surgery, Department of Surgery, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15143, USA
| | - Theodore H Yuo
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15143, USA
| | - Kathirvel Subramaniam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, 3471 5th Avenue Ste 402, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Mingming L, Peng P, Lichen Z, Shaohua L, Fei Y, Hongtao Z, Shitong L, Yao H, Xihai Z, Jianming C. Predictors of Progression in Intraplaque Hemorrhage Volume in Patients With Carotid Atherosclerosis: A Serial Magnetic Resonance Imaging Study. Front Neurol 2022; 13:815150. [PMID: 35911916 PMCID: PMC9334903 DOI: 10.3389/fneur.2022.815150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeThis study aimed to investigate the arterial disease risk factors for the progression of intraplaque hemorrhage (IPH) in patients with carotid atherosclerosis using serial high-resolution magnetic resonance (MR) imaging.MethodsConsecutive symptomatic patients who had MRI evidence of intraplaque hemorrhage present in the ipsilateral carotid artery with respect to the side of the brain affected by stroke or TIA were recruited in the study. All the patients underwent follow-up MR imaging at least 6 months after baseline. The annual change in IPH and other carotid plaque morphology was calculated, and a tertile method was used to classify the plaques as progressed or not with respect to IPH volume using the software CASCADE. Logistic regression and receiver operating characteristic (ROC) curve were conducted to evaluate the risk factors for the progression of IPH.ResultsA total of thirty-four symptomatic patients (mean age: 67.1 years, standard deviation [SD]: 9.8 years, 27 men) were eligible for the final analysis, and contralateral plaques containing IPH were seen in 11 of these patients (making 45 plaques with IPH in total). During mean 16.6-month (SD: 11.0 months) follow-up, the overall annual change in IPH volume in 45 plaques with IPH was mean −10.9 mm3 (SD: 49.1 mm3). Carotid plaques were significantly more likely to be classified in progressed IPH group if the patient was taking antiplatelet agent at baseline (OR: 9.76; 95%CI: 1.05 to 90.56; p = 0.045), had a baseline history of current or past smoking (OR: 9.28; 95%CI: 1.26 to 68.31; p = 0.029), or had a larger baseline carotid plaque-containing vessel wall volume (OR: 1.36 per 10 mm3; 95%CI: 1.02 to 1.81; p = 0.032) after adjustments for confounding factors. ROC analysis indicated that the combination of these three risk factors in the final model produced good discriminatory value for the progressed IPH group (area under the curve: 0.887).ConclusionsTaking an antiplatelet agent at baseline, a baseline history of current or past smoking and larger baseline carotid plaque-containing vessel wall volume were independently predictive of plaques being in the progressed IPH group. Our findings indicate that awareness and management of such risk factors may reduce the risk of intraplaque hemorrhage progression.
Collapse
Affiliation(s)
- Lu Mingming
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Department of Radiology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Peng Peng
- Department of Radiology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Zhang Lichen
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Liu Shaohua
- State Key Laboratory of Kidney Disease, Beijing Key Laboratory of Aging and Geriatrics, The Second Medical Center of PLA General Hospital, Institute of Geriatrics, Beijing, China
| | - Yuan Fei
- Department of Radiology, Pingjin Hospital, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Zhang Hongtao
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Liu Shitong
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - He Yao
- State Key Laboratory of Kidney Disease, Beijing Key Laboratory of Aging and Geriatrics, The Second Medical Center of PLA General Hospital, Institute of Geriatrics, Beijing, China
- He Yao
| | - Zhao Xihai
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
- Zhao Xihai
| | - Cai Jianming
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Cai Jianming
| |
Collapse
|
5
|
Holmes DR, Alkhouli MA, Klaas JP, Brinjikji W, Savastano LE, Lanzino G, Benson JC. Change of Heart: The Underexplored Role of Plaque Hemorrhage in the Evaluation of Stroke of Undetermined Etiology. J Am Heart Assoc 2022; 11:e025323. [PMID: 35475334 PMCID: PMC9238607 DOI: 10.1161/jaha.122.025323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the evaluation of embolic strokes of undetermined source, great emphasis is often placed on cardiovascular disease, namely on atrial fibrillation. Other pathophysiologic mechanisms, however, may also be involved. Carotid artery intraplaque hemorrhage (IPH)—the presence of blood components within an atheromatous plaque—has become increasingly recognized as a possible etiologic mechanism in some cryptogenic strokes. IPH is a marker of plaque instability and is associated with ipsilateral neurologic ischemic events, even in nonstenotic carotid plaques. As recognition of carotid IPH as an etiology of embolic strokes has grown, so too has the complexity with which such patients are evaluated and treated, particularly because overlaps exist in the risk factors for atrial fibrillation and IPH. In this article, we review what is currently known about carotid IPH and how this clinical entity should be approached in the context of the evaluation of embolic strokes of undetermined source.
Collapse
Affiliation(s)
- David R Holmes
- Department of Cardiovascular Medicine Mayo Clinic Rochester MN
| | | | | | | | | | | | | |
Collapse
|
6
|
Jia Y, Liu X, Zhang L, Kong X, Chen S, Zhang L, Wang J, Shu S, Liu J, Fu X, Liu D, Wang J, Shi H. Integrated head and neck imaging of symptomatic patients with stroke using simultaneous non-contrast cardiovascular magnetic resonance angiography and intraplaque hemorrhage imaging as compared with digital subtraction angiography. J Cardiovasc Magn Reson 2022; 24:19. [PMID: 35307027 PMCID: PMC8935695 DOI: 10.1186/s12968-022-00849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both stenosis rate and intraplaque hemorrhage (IPH) are important predictors of stroke risk. Simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) cardiovascular magnetic resonance (CMR) imaging can detect both stenosis rate and IPH. We aimed to evaluate consistency between SNAP and digital subtraction angiography (DSA) to assess symptomatic patients with stroke and explore the performance of SNAP to identify IPH and the clinical factors associated with IPH. METHODS Eighty-one symptomatic patients with stroke, admitted to Wuhan Union Hospital who underwent CMR high-resolution vessel wall imaging (HR-VWI) and SNAP, were retrospectively identified. For patients who received interventional therapy, the imaging functions of SNAP and HR-VWI were compared with DSA. The diameters of the intracranial and carotid vessels were measured, and stenotic vessels were identified. The consistency of SNAP and HR-VWI in identifying IPH was also examined, and the correlations between IPH and clinical factors were analyzed. RESULTS SNAP was more consistent with DSA than HR-VWI in measuring vascular stenosis (intraclass correlation coefficient [ICC]SNAP-DSA = 0.917, ICC HR-VWI-DSA = 0.878). Regarding the diameter measurements of each intracranial and carotid vessel segment, SNAP was superior or similar to HR-VWI, and both were consistent with DSA in the measurement of major intracranial vascular segments. HR-VWI and SNAP exhibited acceptable agreement in identifying IPH (Kappa = 0.839, 95% confidence interval [CI]: 0.704-0.974). Patients who underwent interventional therapy had a higher plaque burden (P < 0.001). Patients with IPH had lower levels of high-density lipoprotein cholesterol (HDL) (P = 0.038) and higher levels of blood glucose (P = 0.007) and cystatin C (P = 0.040). CONCLUSIONS CMR SNAP is consistent with DSA in measuring vessel diameters and identifying atherosclerosis stenosis in each intracranial and carotid vessel segment. SNAP is also a potential alternative to HR-VWI in identifying stenosis and IPH.
Collapse
Affiliation(s)
- Yuxi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Tsinghua University School of Medicine, Haidian District, Beijing, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiazheng Wang
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Shenglei Shu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaona Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Dingxi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|