1
|
Ma J, Gan L, Chen H, Chen L, Hu Y, Luan C, Chen K, Zhang J. Upregulated miR-374a-5p drives psoriasis pathogenesis through WIF1 downregulation and Wnt5a/NF-κB activation. Cell Signal 2024; 119:111171. [PMID: 38604345 DOI: 10.1016/j.cellsig.2024.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1β, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- Jing Ma
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Lu Gan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Hongying Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Lihao Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yu Hu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Chao Luan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Kun Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Jiaan Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Yan K, Zhang F, Ren J, Huang Q, Yawalkar N, Han L. MicroRNA-125a-5p regulates the effect of Tregs on Th1 and Th17 through targeting ETS-1/STAT3 in psoriasis. J Transl Med 2023; 21:678. [PMID: 37773129 PMCID: PMC10543306 DOI: 10.1186/s12967-023-04427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Psoriasis is an inflammatory disease mediated by helper T (Th)17 and Th1 cells. MicroRNA-125a (miR-125a) is reduced in the lesional skin of psoriatic patients. However, the mechanism by which miR-125a participates in psoriasis remains unclear. METHODS The levels of miR-125a-5p and its downstream targets (ETS-1, IFN-γ, and STAT3) were detected in CD4+ T cells of healthy controls and psoriatic patients by quantitative real-time PCR (qRT-PCR). In vitro, transfection of miR-125a-5p mimics was used to analyze the effect of miR-125a-5p on the differentiation of Th17 cells by flow cytometry. Imiquimod (IMQ)-induced mouse model was used to evaluate the role of upregulating miR-125a-5p by intradermal injection of agomir-125a-5p in vivo. RESULTS miR-125a-5p was downregulated in peripheral blood CD4+ T cells of psoriatic patients, which was positively associated with the proportion of regulatory T cells (Tregs) and negatively correlated with the Psoriasis Area and Severity Index (PASI) score. Moreover, the miR-125a-5p mimics promoted the differentiation of Tregs and downregulated the messenger RNA (mRNA) levels of ETS-1, IFN-γ, and STAT3 in murine CD4+ T cells. Furthermore, agomir-125a-5p alleviated psoriasis-like inflammation in an IMQ-induced mouse model by downregulating the proportion of Th17 cells. CONCLUSIONS miR-125a-5p may have therapeutic potential in psoriasis by restoring the suppressive function of Tregs on Th17 cells through targeting STAT3, and on Th1 cells indirectly through targeting ETS-1 and IFN-γ.
Collapse
Affiliation(s)
- Kexiang Yan
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Fuxin Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
4
|
Sun W, Chen J, Li J, She X, Ma H, Wang S, Liu J, Yuan Y. Vitamin D receptor-deficient keratinocytes-derived exosomal miR-4505 promotes the macrophage polarization towards the M1 phenotype. PeerJ 2023; 11:e15798. [PMID: 37554338 PMCID: PMC10405794 DOI: 10.7717/peerj.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The vitamin D receptor (VDR) has a low level of expression in the keratinocytes of patients with psoriasis and plays a role in the development of the disease. Furthermore, the crosstalk between macrophages and psoriatic keratinocytes-derived exosomes is critical for psoriasis progression. However, the effects of VDR-deficient keratinocytes-derived exosomes (Exos-shVDR) on macrophages and their underlying mechanisms remain largely unknown. METHODS VDR-deficient keratinocytes were constructed by infecting HaCaT cells with a VDR-targeting lentivirus, mimicking the VDR-deficient state observed in psoriatic keratinocytes. Exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot. The effect of Exos-shVDR on macrophage proliferation, apoptosis, and M1/M2 polarization was assessed using cell counting kit-8 assay (CCK-8), flow cytometer, real-time quantitative polymerasechain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The mechanism underlying the effect of Exos-shVDR on macrophage function was elucidated through data mining, bioinformatics, RT-qPCR, and rescue experiments. RESULTS Our results revealed that both Exos-shVDR and Exos-shNC exhibited typical exosome characteristics, including a hemispheroid shape with a concave side and particle size ranging from 50 to 100 nm. The levels of expression of VDR were significantly lower in Exos-shVDR than in Exos-shNC. Functional experiments demonstrated that Exos-shVDR significantly promoted macrophage proliferation and polarization towards the M1 phenotype while inhibiting macrophage apoptosis. Moreover, miR-4505 was highly expressed in the skin tissue of patients with psoriasis. Its overexpression significantly increased macrophage proliferation and polarization towards M1 and inhibited apoptosis. Furthermore, the effects of Exos-shVDR on macrophage function occur through miR-4505. CONCLUSIONS Exos-shVDR exacerbates macrophage proliferation, promotes polarization towards the M1 phenotype, and inhibits macrophage apoptosis by increasing the levels of miR-4505. These results indicate that modulation of macrophage function is a potential strategy for developing new drugs for the treatment of psoriasis.
Collapse
Affiliation(s)
- Wen Sun
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Jianqin Chen
- Department of Dermatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingting Li
- Department of Traditional Chinese Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Xiaoguang She
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Hu Ma
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Shali Wang
- Department of Dermatology, Jingmen Central Hospital, Jingmen, China
| | - Jing Liu
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Yuan
- Department of Surgical Anesthesiology, Jingmen Central Hospital, Jingmen, China
| |
Collapse
|
5
|
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022; 12:biom12081072. [PMID: 36008966 PMCID: PMC9405611 DOI: 10.3390/biom12081072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.
Collapse
|
6
|
Shu X, Chen XX, Kang XD, Ran M, Wang YL, Zhao ZK, Li CX. Identification of potential key molecules and signaling pathways for psoriasis based on weighted gene co-expression network analysis. World J Clin Cases 2022; 10:5965-5983. [PMID: 35949853 PMCID: PMC9254198 DOI: 10.12998/wjcc.v10.i18.5965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease, the pathogenesis of which is more complicated and often requires long-term treatment. In particular, moderate to severe psoriasis usually requires systemic treatment. Psoriasis is also associated with many diseases, such as cardiometabolic diseases, malignant tumors, infections, and mood disorders. Psoriasis can appear at any age, and lead to a substantial burden for individuals and society. At present, psoriasis is still a treatable, but incurable, disease. Previous studies have found that microRNAs (miRNAs) play an important regulatory role in the progression of various diseases. Currently, miRNAs studies in psoriasis and dermatology are relatively new. Therefore, the identification of key miRNAs in psoriasis is helpful to elucidate the molecular mechanism of psoriasis.
AIM To identify key molecular markers and signaling pathways to provide potential basis for the treatment and management of psoriasis.
METHODS The miRNA and mRNA data were obtained from the Gene Expression Omnibus database. Then, differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs) were screened out by limma R package. Subsequently, DEmRNAs were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomics functional enrichment. The “WGCNA” R package was used to analyze the co-expression network of all miRNAs. In addition, we constructed miRNA-mRNA regulatory networks based on identified hub miRNAs. Finally, in vitro validation was performed. All experimental procedures were approved by the ethics committee of Chinese PLA General Hospital (S2021-012-01).
RESULTS A total of 639 DEmRNAs and 84 DEmiRNAs were identified. DEmRNAs screening criteria were adjusted P (adj. P) value < 0.01 and |logFoldChange| (|logFC|) > 1. DEmiRNAs screening criteria were adj. P value < 0.01 and |logFC| > 1.5. KEGG functional analysis demonstrated that DEmRNAs were significantly enriched in immune-related biological functions, for example, toll-like receptor signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. In weighted gene co-expression network analysis, turquoise module was the hub module. Moreover, 10 hub miRNAs were identified. Among these 10 hub miRNAs, only 8 hub miRNAs predicted the corresponding target mRNAs. 97 negatively regulated miRNA-mRNA pairs were involved in the miRNA-mRNA regulatory network, for example, hsa-miR-21-5p-claudin 8 (CLDN8), hsa-miR-30a-3p-interleukin-1B (IL-1B), and hsa-miR-181a-5p/hsa-miR-30c-2-3p-C-X-C motif chemokine ligand 9 (CXCL9). Real-time polymerase chain reaction results showed that IL-1B and CXCL9 were up-regulated and CLDN8 was down-regulated in psoriasis with statistically significant differences.
CONCLUSION The identification of potential key molecular markers and signaling pathways provides potential research directions for further understanding the molecular mechanisms of psoriasis. This may also provide new research ideas for the prevention and treatment of psoriasis in the future.
Collapse
Affiliation(s)
- Xin Shu
- Department of Dermatology, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Xiao-Xia Chen
- Department of Radiology, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xin-Dan Kang
- Department of Comprehensive Surgical, The Second Medical Center of Chinese PLA General Hospital, Beijing 100089, China
| | - Min Ran
- Department of Endocrine, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - You-Lin Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhen-Kai Zhao
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Cheng-Xin Li
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Long non-coding RNA RP11-342L8.2, derived from RNA sequencing and validated via RT-qPCR, is upregulated and correlates with disease severity in psoriasis patients. Ir J Med Sci 2022; 191:2643-2649. [PMID: 35028895 DOI: 10.1007/s11845-021-02882-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to explore the dysregulated long non-coding RNA (lncRNA) expression profile in psoriatic tissue vs. normal skin tissue via RNA sequencing (RNA-seq), then further sort candidate lncRNAs to be validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), in order to investigate the comprehensive linkage of lncRNA with psoriasis. METHODS Twenty-five psoriasis patients were consecutively enrolled, with their psoriatic and surrounding normal skin tissues obtained. Ten pairs of psoriatic and normal tissues were proposed to RNA-seq. Then, top 6 differentially expressed lncRNAs (DElncRNA) were sorted as candidate lncRNAs for validation by RT-qPCR in 25 pairs of samples. RESULTS Principal component analysis (PCA) exhibited that lncRNA profile clearly distinguished psoriatic tissue from normal tissue, so did heatmap. Volcano plot disclosed 412 upregulated and 625 downregulated DElncRNAs in psoriatic tissue vs. normal tissue. Gene Ontology (GO) and Kyoko Encyclopedia of Genes and Genomes (KEGG) enrichment analyses exhibited that these DElncRNAs were mainly enriched in immune, inflammation, or proliferation-related biological processes and pathways such as neutrophil degranulation, regulation of immune response, positive regulation of cell proliferation, and MAPK signaling pathway. By RT-qPCR validation, lncRNAs RP11-22A3.2, RP11-342L8.2, and CTD-2006H14.2 were increased (all P < 0.001), while lncRNAs AP000442.4, CCDC144NL-AS1, and MIR663AHG were decreased (all P < 0.01) in psoriatic tissue vs. normal tissue. Interestingly, psoriatic lncRNA RP11-342L8.2 was also observed to positively correlated with psoriasis area and severity index (PASI) (r = 0.405, P = 0.045). CONCLUSION Our present study exhibits some evidence for the landscape of lncRNAs implicated in psoriasis.
Collapse
|