1
|
Gonçalves IM, Afzal M, Kennedy N, Moita A, Lima R, Ostrovidov S, Hori T, Nashimoto Y, Kaji H. Placental microphysiological systems: new advances on promising platforms that mimic the microenvironment of the human placenta. LAB ON A CHIP 2024. [PMID: 39417748 DOI: 10.1039/d4lc00500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One of the most complex human physiological processes to study is pregnancy. Standard animal models, as well as two-dimensional models, lack the complexity and biological relevance required to accurately study such a physiological process. Recent studies have focused on the development of three-dimensional models based on microfluidic systems, designated as placental microphysiological systems (PMPSs). PMPS devices provide a model of the placental barrier through culturing relevant cell types in specific arrangements and media to mimic the in vivo environment of the maternal-fetal circulation. Here, recent developments of PMPS models for embryo uterine implantation, preeclampsia evaluation, and toxicological screening are presented. Studies that use bioprinting techniques are also discussed. Lastly, recent developments in endometrium microphysiological systems are reviewed. All these presented models showed their superiority compared to standard models in recapitulating the biological environment seen in vivo. However, several limitations regarding the types of cells and materials used for these systems were also widely reported. Despite the need for further improvements, PMPS models contribute to a better understanding of the biological mechanisms surrounding pregnancy and the respective pathologies.
Collapse
Affiliation(s)
- Inês M Gonçalves
- METRICS, University of Minho, Guimarães, Portugal
- IN+, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Muhammad Afzal
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Nithil Kennedy
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
- Faculty of Medicine, Imperial College London, London, UK
| | - Ana Moita
- IN+, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Desenvolvimento e Inovação da Academia Militar, Academia Militar, Instituto Universitário Militar, Rua Gomes Freire, 1169-203, Lisboa, Portugal
| | - Rui Lima
- METRICS, University of Minho, Guimarães, Portugal
- CEFT, Faculty of Engineering of the University of Porto, Porto, Portugal
- ALiCE, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Serge Ostrovidov
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research (IIR), Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo, Japan
| |
Collapse
|
2
|
Menon R, Richardson L, Kammala AK. New approach methods on the bench side to accelerate clinical trials during pregnancy. Expert Opin Drug Metab Toxicol 2024; 20:555-560. [PMID: 38739076 DOI: 10.1080/17425255.2024.2353944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Pregnant women are therapeutic orphans as they are excluded from clinical drug development and therapeutic trials. We identify limitations in conducting clinical trials and propose two 'New Approach Methods'(NAMs) to overcome them. AREAS COVERED NAMs have proven invaluable tools in basic and clinical research to understand human health and disease better, elucidate mechanisms, and study the efficacy and toxicity of therapeutics that have not been possible through animal-based methodologies. The lack of humanized experimental models of FMi and drugs that can safely and effectively cross FMi to reduce the risk of adverse pregnancy has hindered progress in the field of reproductive pharmacology. This report discusses two technological advancements in perinatal research and medicine to accelerate clinical trials during pregnancy. (1) We have developed a humanized microphysiologic system, an Organ-on-a-chip (OOC) platform, to study FMi and their utility in pharmacological studies, and (2) use of extracellular vesicles (EVs) as drug delivery vehicles that are immunologically inert and can cross the fetomaternal barriers. EXPERT OPINION We provide an overview of NAMs that can accelerate preclinical trials and develop drugs to cross the feto-maternal barriers to reduce the risk of adverse pregnancy outcomes like preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
3
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
4
|
Yin T, Li X, Li Y, Zang X, Liu L, Du M. Macrophage plasticity and function in cancer and pregnancy. Front Immunol 2024; 14:1333549. [PMID: 38274812 PMCID: PMC10808357 DOI: 10.3389/fimmu.2023.1333549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
As the soil of life, the composition and shaping process of the immune microenvironment of the uterus is worth exploring. Macrophages, indispensable constituents of the innate immune system, are essential mediators of inflammation and tissue remodeling as well. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in both physiological and pathological settings. Macrophages display remarkable plasticity and switch from one phenotype to another. Intrinsic plasticity enables tissue macrophages to perform a variety of functions in response to changing tissue contexts, such as cancer and pregnancy. The remarkable diversity and plasticity make macrophages particularly intriguing cells given their dichotomous role in either attacking or protecting tumors and semi-allogeneic fetuses, which of both are characterized functionally by immunomodulation and neovascularization. Here, we reviewed and compared novel perspectives on macrophage biology of these two settings, including origin, phenotype, differentiation, and essential roles in corresponding microenvironments, as informed by recent studies on the heterogeneity of macrophage identity and function, as well as their mechanisms that might offer opportunities for new therapeutic strategies on malignancy and pregnancy complications.
Collapse
Affiliation(s)
- Tingxuan Yin
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinyi Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lu Liu
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
5
|
Bertozzi S, Corradetti B, Seriau L, Diaz Ñañez JA, Cedolini C, Fruscalzo A, Cesselli D, Cagnacci A, Londero AP. Nanotechnologies in Obstetrics and Cancer during Pregnancy: A Narrative Review. J Pers Med 2022; 12:jpm12081324. [PMID: 36013273 PMCID: PMC9410527 DOI: 10.3390/jpm12081324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology, the art of engineering structures on a molecular level, offers the opportunity to implement new strategies for the diagnosis and management of pregnancy-related disorders. This review aims to summarize the current state of nanotechnology in obstetrics and cancer in pregnancy, focusing on existing and potential applications, and provides insights on safety and future directions. A systematic and comprehensive literature assessment was performed, querying the following databases: PubMed/Medline, Scopus, and Endbase. The databases were searched from their inception to 22 March 2022. Five independent reviewers screened the items and extracted those which were more pertinent within the scope of this review. Although nanotechnology has been on the bench for many years, most of the studies in obstetrics are preclinical. Ongoing research spans from the development of diagnostic tools, including optimized strategies to selectively confine contrast agents in the maternal bloodstream and approaches to improve diagnostics tests to be used in obstetrics, to the synthesis of innovative delivery nanosystems for therapeutic interventions. Using nanotechnology to achieve spatial and temporal control over the delivery of therapeutic agents (e.g., commonly used drugs, more recently defined formulations, or gene therapy-based approaches) offers significant advantages, including the possibility to target specific cells/tissues of interest (e.g., the maternal bloodstream, uterus wall, or fetal compartment). This characteristic of nanotechnology-driven therapy reduces side effects and the amount of therapeutic agent used. However, nanotoxicology appears to be a significant obstacle to adopting these technologies in clinical therapeutic praxis. Further research is needed in order to improve these techniques, as they have tremendous potential to improve the accuracy of the tests applied in clinical praxis. This review showed the increasing interest in nanotechnology applications in obstetrics disorders and pregnancy-related pathologies to improve the diagnostic algorithms, monitor pregnancy-related diseases, and implement new treatment strategies.
Collapse
Affiliation(s)
- Serena Bertozzi
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Bruna Corradetti
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luca Seriau
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
| | - José Andrés Diaz Ñañez
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Carla Cedolini
- Breast Unit, Department of Surgery, DAME, University Hospital of “Santa Maria della Misericordia”, 33100 Udine, Italy
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
| | - Arrigo Fruscalzo
- Clinic of Obstetrics and Gynecology, University Hospital of Fribourg, 1752 Fribourg, Switzerland
| | - Daniela Cesselli
- Institute of Pathology, DAME, University of Udine, University Hospital of Udine, 33100 Udine, Italy
| | - Angelo Cagnacci
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Ambrogio P. Londero
- Ennergi Research (Non-Profit Organisation), 33050 Lestizza, Italy
- Academic Unit of Obstetrics and Gynaecology, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy
- Correspondence: or
| |
Collapse
|
6
|
In Vitro Models of Biological Barriers for Nanomedical Research. Int J Mol Sci 2022; 23:ijms23168910. [PMID: 36012181 PMCID: PMC9408841 DOI: 10.3390/ijms23168910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022] Open
Abstract
Nanoconstructs developed for biomedical purposes must overcome diverse biological barriers before reaching the target where playing their therapeutic or diagnostic function. In vivo models are very complex and unsuitable to distinguish the roles plaid by the multiple biological barriers on nanoparticle biodistribution and effect; in addition, they are costly, time-consuming and subject to strict ethical regulation. For these reasons, simplified in vitro models are preferred, at least for the earlier phases of the nanoconstruct development. Many in vitro models have therefore been set up. Each model has its own pros and cons: conventional 2D cell cultures are simple and cost-effective, but the information remains limited to single cells; cell monolayers allow the formation of cell–cell junctions and the assessment of nanoparticle translocation across structured barriers but they lack three-dimensionality; 3D cell culture systems are more appropriate to test in vitro nanoparticle biodistribution but they are static; finally, bioreactors and microfluidic devices can mimicking the physiological flow occurring in vivo thus providing in vitro biological barrier models suitable to reliably assess nanoparticles relocation. In this evolving context, the present review provides an overview of the most representative and performing in vitro models of biological barriers set up for nanomedical research.
Collapse
|
7
|
Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research? Pathogens 2021; 10:pathogens10101233. [PMID: 34684182 PMCID: PMC8537471 DOI: 10.3390/pathogens10101233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an in-scale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defects.
Collapse
|