1
|
Shao J, Jiang G, Li Y, Wang M, Tang T, Wang J, Jia X, Lai S. Let-7a-5p Regulates Animal Lipid Accumulation by Targeting Srebf2 and Thbs1 Signaling. Int J Mol Sci 2024; 25:894. [PMID: 38255968 PMCID: PMC10815625 DOI: 10.3390/ijms25020894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
Recently, the trend of obesity is becoming increasingly prevalent, and the underlying pathogenesis of obesity is complex and needs to be researched further. In this study, we report a decreased expression of let-7a-5p in the white adipose tissue (WAT) of animals with obesity. Using the RNA oligo, let-7a-5p over-expression or suppression-expression is achieved, impacting the proliferation and differentiation of preadipocytes in vitro. Srebf2 mechanistically interacts with the metabolic effect of let-7a-5p and participates in lipid accumulation by regulating Srebf2 downstream signaling. Moreover, let-7a-5p binds to Thbs1 to interact with the PI3K-AKT-mTOR pathway, down-regulating the phosphorylation levels of AKT, mTOR, and S6K1 to decrease lipid accumulation. In conclusion, our study highlights the physiological significance of let-7a-5p in lipid accumulation and suggests that the let-7a-5p/Srebf2 and let-7a-5p/Thbs1/PI3K-AKT-mTOR axes may represent potential mechanisms for controlling lipid accumulation in obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (G.J.); (Y.L.); (M.W.); (T.T.); (J.W.); (X.J.)
| |
Collapse
|
2
|
Dracheva KV, Pobozheva IA, Anisimova KA, Balandov SG, Grunina MN, Hamid ZM, Vasilevsky DI, Pchelina SN, Miroshnikova VV. Downregulation of Exosomal hsa-miR-551b-3p in Obesity and Its Link to Type 2 Diabetes Mellitus. Noncoding RNA 2023; 9:67. [PMID: 37987363 PMCID: PMC10660712 DOI: 10.3390/ncrna9060067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Obesity is a significant risk factor for the development of type 2 diabetes mellitus (T2DM). Adipose tissue dysfunction can affect the pool of circulating exosomal miRNAs, driving concomitant disease in obesity. These exosomal miRNAs can reflect adipose tissue functionality, thus serving as prognostic biomarkers for disease monitoring in case of T2DM. In the present study, we conducted NanoString microRNA profiling of extracellular vesicles (EVs) secreted by adipose tissue of obese patients (body mass index (BMI) > 35) without T2DM and nonobese individuals (BMI < 30) as a control group. Functional and pathway enrichment analysis showed that miRNAs associated with obesity in this study were implicated in insulin signaling and insulin resistance biological pathways. Further, these microRNAs were screened in serum EVs in the following groups: (1) obese patients with T2DM, (2) obese patients without T2DM, and (3) nonobese individuals as a control group. has-miR-551b-3p was shown to be downregulated in adipose tissue EVs, as well as in serum EVs, of patients with obesity without T2DM. At the same time, the serum exosomal hsa-miR-551b-3p content was significantly higher in obese patients with T2DM when compared with obese patients without T2DM and may be a potential biomarker of T2DM development in obesity.
Collapse
Affiliation(s)
- Kseniia V. Dracheva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Irina A. Pobozheva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Kristina A. Anisimova
- Center for Surgical Treatment of Obesity and Metabolic Disorders, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Stanislav G. Balandov
- Center for Surgical Treatment of Obesity and Metabolic Disorders, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Maria N. Grunina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Zarina M. Hamid
- Center for Surgical Treatment of Obesity and Metabolic Disorders, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Dmitriy I. Vasilevsky
- Center for Surgical Treatment of Obesity and Metabolic Disorders, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Sofya N. Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia
| | - Valentina V. Miroshnikova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, 197022 Saint Petersburg, Russia
| |
Collapse
|
3
|
Bollati V, Monti P, Biganzoli D, Marano G, Favero C, Iodice S, Ferrari L, Dioni L, Bianchi F, Pesatori AC, Biganzoli EM. Environmental and Lifestyle Cancer Risk Factors: Shaping Extracellular Vesicle OncomiRs and Paving the Path to Cancer Development. Cancers (Basel) 2023; 15:4317. [PMID: 37686592 PMCID: PMC10486808 DOI: 10.3390/cancers15174317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Intercellular communication has been transformed by the discovery of extracellular vesicles (EVs) and their cargo, including microRNAs (miRNAs), which play crucial roles in intercellular signaling. These EVs were previously disregarded as cellular debris but are now recognized as vital mediators of biological information transfer between cells. Furthermore, they respond not only to internal stimuli but also to environmental and lifestyle factors. Identifying EV-borne oncomiRs, a subset of miRNAs implicated in cancer development, could revolutionize our understanding of how environmental and lifestyle exposures contribute to oncogenesis. To investigate this, we studied the plasma levels of EV-borne oncomiRs in a population of 673 women and 238 men with a body mass index > 25 kg/m2 (SPHERE population). The top fifty oncomiRs associated with the three most common cancers in women (breast, colorectal, and lung carcinomas) and men (lung, prostate, and colorectal carcinomas) were selected from the OncomiR database. Only oncomiRs expressed in more than 20% of the population were considered for statistical analysis. Using a Multivariate Adaptive Regression Splines (MARS) model, we explored the interactions between environmental/lifestyle exposures and EV oncomiRs to develop optimized predictor combinations for each EV oncomiR. This innovative approach allowed us to better understand miRNA regulation in response to multiple environmental and lifestyle influences. By uncovering non-linear relationships among variables, we gained valuable insights into the complexity of miRNA regulatory networks. Ultimately, this research paves the way for comprehensive exposome studies in the future.
Collapse
Affiliation(s)
- Valentina Bollati
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy; (P.M.); (C.F.); (S.I.); (L.F.); (L.D.); (A.C.P.)
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paola Monti
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy; (P.M.); (C.F.); (S.I.); (L.F.); (L.D.); (A.C.P.)
| | - Davide Biganzoli
- Center of Functional Genomics and Rare Diseases, Buzzi Children’s Hospital, 20154 Milan, Italy;
| | - Giuseppe Marano
- Unit of Medical Statistics, Bioinformatics and Epidemiology, Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, 20133 Milan, Italy;
| | - Chiara Favero
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy; (P.M.); (C.F.); (S.I.); (L.F.); (L.D.); (A.C.P.)
| | - Simona Iodice
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy; (P.M.); (C.F.); (S.I.); (L.F.); (L.D.); (A.C.P.)
| | - Luca Ferrari
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy; (P.M.); (C.F.); (S.I.); (L.F.); (L.D.); (A.C.P.)
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Dioni
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy; (P.M.); (C.F.); (S.I.); (L.F.); (L.D.); (A.C.P.)
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, University of Milan, 20133 Milan, Italy;
- U. O. Laboratorio Morfologia Umana Applicata, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Angela Cecilia Pesatori
- Epiget Lab, Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy; (P.M.); (C.F.); (S.I.); (L.F.); (L.D.); (A.C.P.)
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elia Mario Biganzoli
- Unit of Medical Statistics, Bioinformatics and Epidemiology, Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, 20133 Milan, Italy;
| |
Collapse
|
4
|
MicroRNA profiling of subcutaneous adipose tissue in periparturient dairy cows at high or moderate body condition. Sci Rep 2022; 12:14748. [PMID: 36042230 PMCID: PMC9427980 DOI: 10.1038/s41598-022-18956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
A growing body of evidence shows that microRNA (miRNA), play important roles in regulating adipose tissue (AT) physiology and function. The objective was to characterize the AT miRNA profile in over-conditioned (HBCS, n = 19) versus moderate-conditioned (MBCS, n = 19) periparturient dairy cows. Tail-head subcutaneous AT biopsied on d -49 and 21 relative to parturition were used for miRNA sequencing. The miR-486 was the most significant miRNA among the upregulated miRNA on d -49, which might be related to more pronounced changes in lipogenesis and altered insulin sensitivity in AT of HBCS cows at dry-off. Comparing HBCS to MBCS on d 21, 23 miRNA were downregulated and 20 were upregulated. The predicted targets of upregulated differentially expressed (DE)-miRNA on d 21 were enriched in different pathways, including pathways related to lysosomes and peroxisomes. The predicted targets of downregulated DE-miRNA on d 21 were enriched in various pathways, including epidermal growth factor receptor, insulin resistance, hypoxia-inducible factor 1 signaling pathway, and autophagy. The results showed that over-conditioning was associated with changes in SCAT miRNA profile mainly on d 21, of which most were downregulated. The enriched pathways may participate in over-conditioning-associated metabolic challenges during early lactation.
Collapse
|
5
|
Concistrè A, Petramala L, Circosta F, Romagnoli P, Soldini M, Bucci M, De Cesare D, Cavallaro G, De Toma G, Cipollone F, Letizia C. Analysis of the miRNA expression from the adipose tissue surrounding the adrenal neoplasia. Front Cardiovasc Med 2022; 9:930959. [PMID: 35966515 PMCID: PMC9366211 DOI: 10.3389/fcvm.2022.930959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Primary aldosteronism (PA) is characterized by several metabolic changes such as insulin resistance, metabolic syndrome, and adipose tissue (AT) inflammation. Mi(cro)RNAs (miRNAs) are a class of non-coding small RNA molecules known to be critical regulators in several cellular processes associated with AT dysfunction. The aim of this study was to evaluate the expression of some miRNAs in visceral and subcutaneous AT in patients undergoing adrenalectomy for aldosterone-secreting adrenal adenoma (APA) compared to the samples of AT obtained in patients undergoing adrenalectomy for non-functioning adrenal mass (NFA). Methods The quantitative expression of selected miRNA using real-time PCR was analyzed in surrounding adrenal neoplasia, peri-renal, and subcutaneous AT samples of 16 patients with adrenalectomy (11 patients with APA and 5 patients with NFA). Results Real-time PCR cycles for miRNA-132, miRNA-143, and miRNA-221 in fat surrounding adrenal neoplasia and in peri-adrenal AT were significantly higher in APA than in patients with NFA. Unlike patients with NFA, miRNA-132, miRNA-143, miRNA-221, and miRNA-26b were less expressed in surrounding adrenal neoplasia AT compared to subcutaneous AT in patients with APA. Conclusion This study, conducted on tissue expression of miRNAs, highlights the possible pathophysiological role of some miRNAs in determining the metabolic alterations in patients with PA.
Collapse
Affiliation(s)
- Antonio Concistrè
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Luigi Petramala
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Circosta
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Priscilla Romagnoli
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Maurizio Soldini
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Marco Bucci
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Domenico De Cesare
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Cavallaro
- Department of Surgery “Pietro Valdoni, ” “Sapienza” University of Rome, Rome, Italy
| | - Giorgio De Toma
- Department of Surgery “Pietro Valdoni, ” “Sapienza” University of Rome, Rome, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, University “Gabriele d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Claudio Letizia
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, Rome, Italy
- *Correspondence: Claudio Letizia
| |
Collapse
|
6
|
microRNAs in Human Adipose Tissue Physiology and Dysfunction. Cells 2021; 10:cells10123342. [PMID: 34943849 PMCID: PMC8699244 DOI: 10.3390/cells10123342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a large amount of evidence on the role of microRNA (miRNA) in regulating adipose tissue physiology. Indeed, miRNAs control critical steps in adipocyte differentiation, proliferation and browning, as well as lipolysis, lipogenesis and adipokine secretion. Overnutrition leads to a significant change in the adipocyte miRNOME, resulting in adipose tissue dysfunction. Moreover, via secreted mediators, dysfunctional adipocytes may impair the function of other organs and tissues. However, given their potential to control cell and whole-body energy expenditure, miRNAs also represent critical therapeutic targets for treating obesity and related metabolic complications. This review attempts to integrate present concepts on the role miRNAs play in adipose tissue physiology and obesity-related dysfunction and data from pre-clinical and clinical studies on the diagnostic or therapeutic potential of miRNA in obesity and its related complications.
Collapse
|