1
|
Jiang L, Zhou X, Zhao X, Wang Z, Huang A, Huang Y, Sun H, Guan F, Jiang W. Tetrandrine downregulates TRPV2 expression to ameliorate myocardial ischemia/reperfusion injury in rats via regulation of cardiomyocyte apoptosis, calcium homeostasis and mitochondrial function. Eur J Pharmacol 2024; 964:176246. [PMID: 38061472 DOI: 10.1016/j.ejphar.2023.176246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Our previous study has indicated that tetrandrine (TET) can target miR-202-5p to repress the activation of transient receptor potential vanilloid type 2 (TRPV2), eventually ameliorating the progression of myocardial ischemia/reperfusion injury (MI/RI). This study is aimed to further ascertain the detailed mechanisms between TET and TRPV2 in MI/RI pathogenesis. Here, a myocardial I/R injury rat model and a hypoxia-reoxygenation (H/R) model in rat myocardial cell line (H9C2 cells) were established. We reported that pronounced upregulation of TRPV2 was observed in I/R rats and H/R-induced H9C2 cells. Silencing of TRPV2 could improve cardiac function and myocardial injury, reduced infarction size, and promoted cardiomyocyte proliferation in I/R rats. In I/R rats or H/R-induced H9C2 cells, cardiomyocyte apoptosis was inhibited by knocking-down TRPV2. Meanwhile, the silenced TRPV2 or TET treatment ameliorated the damaged mitochondrial structure, mitigated ROS generation, restored the impaired ΔΨM, inhibited mPTP opening and alleviated Ca2+ overload in H/R-induced H9C2 cells. The results obtained from the overexpression of TRPV2 were contrary to those depicted above. Moreover, TET could downregulate TRPV2 expression, while the overexpression of TRPV2 could reverse the above protective effects of TET in H/R-induced H9C2 cells. The results indicated that TET may function as a TRPV2 blocking agent, thereby attenuating the progression of MI/RI through modulation of cardiomyocyte apoptosis, calcium homeostasis and mitochondrial function. These findings offer a theoretical foundation for potential clinical application of TET therapy in patients with MI/RI.
Collapse
Affiliation(s)
- Lelin Jiang
- The Second Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xue Zhou
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xiaoli Zhao
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhaolin Wang
- The Medical College of Shanghai University, Shanghai, 200000, China.
| | - Anwu Huang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yiwei Huang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Huanghui Sun
- Department of Heart Function Examination, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Fanlu Guan
- Department of Cardiology, The Third Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Wenbing Jiang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Yang R, Shi L, Si H, Hu Z, Zou L, Li L, Xu X, Schmalzing G, Nie H, Li G, Liu S, Liang S, Xu C. Gallic Acid Improves Comorbid Chronic Pain and Depression Behaviors by Inhibiting P2X7 Receptor-Mediated Ferroptosis in the Spinal Cord of Rats. ACS Chem Neurosci 2023; 14:667-676. [PMID: 36719132 DOI: 10.1021/acschemneuro.2c00532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is an inflammatory programmed cell death process that is dependent on iron deposition and lipid peroxidation. The P2X7 receptor not only is involved in the pain process but also is closely related to the onset of depression. Gallic acid (3,4,5-trihydroxybenzoic acid), which is naturally found in a variety of plants, exhibits anti-inflammatory, antioxidant, and analgesic effects. This study established a rat model with the comorbidity of chronic constrictive injury (CCI) plus chronic unpredictable mild stress (CUMS) to explore the role and mechanism of gallic acid in the treatment of pain and depression comorbidity. Our experimental results showed that pain and depression-like behaviors were more obvious in the chronic constriction injury (CCI) plus chronic unpredictable mild stimulation (CUMS) group than they were in the sham operation group, and the P2X7-reactive oxygen species (ROS) signaling pathway was activated. The tissue iron concentration was increased, and mitochondrial damage was observed in the CCI plus CUMS group. These results were alleviated with gallic acid treatment. Therefore, we speculate that gallic acid inhibits the ferroptosis of the spinal microglia by regulating the P2X7-ROS signaling pathway and relieves the behavioral changes in rats with comorbid pain and depression.
Collapse
Affiliation(s)
- Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Liran Shi
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,The People's Hospital of Jiawang of Xuzhou, Xuzhou, Jiangsu 221011, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Han Si
- Nursing College, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Zihui Hu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Lifang Zou
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, Jiangxi 330006, P. R. China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen 52062, Germany
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Changshui Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| |
Collapse
|
3
|
Liang E, Li X, Fu W, Zhao C, Yang B, Yang Z. COP9 Signalosome Subunit 3 Restricts Neuroinflammatory Responses During Cerebral Ischemia/Reperfusion Injury Through Stabilizing Suppressor of Cytokine Signaling 3 Protein. Neuropsychiatr Dis Treat 2021; 17:1217-1227. [PMID: 33911869 PMCID: PMC8075360 DOI: 10.2147/ndt.s298966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The suppressor of cytokine signaling 3 (SOCS3) is a specific negative regulator of signal transducer and activator of transcription 3 (STAT3) signaling, which is predominantly activated to induce neuroinflammatory response in microglia and functions essential roles during cerebral ischemia-reperfusion (I/R) injury. Constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a signaling platform controlling protein stability by remodeling of cullin-RING ubiquitin ligases, which is recently reported to specifically recognize proteins with SOCS-box domains. However, whether SOCS3 is related to COP9 signalosome in neuroinflammation during cerebral I/R injury is completely unclear. METHODS Mice subjected to transient middle cerebral artery occlusion (MCAO) and reperfusion, and BV2 microglia cells treated with oxygen-glucose deprivation and reoxygenation (OGD/R) were used to mimic cerebral I/R injury. Western blot, qRTPCR, immunofluorescence, and co-Immunoprecipitation assays were performed to explore the regulatory mechanism of SOCS3 on neuroinflammation and the relationship of SOCS3 and COP9 signalosome during cerebral I/R injury. RESULTS SOCS3 expression is significantly upregulated in microglia during OGD/R treatment, and overexpression of SOCS3 suppresses OGD/R-induced STAT3 activation and inflammatory factor expression. Furthermore, we find that COP9 signalosome subunit 3 (CSN3) interacts with SOCS3 protein to enhance its stability, thereby resulting in restricting OGD/R-induced STAT3 activation and inflammatory response. Moreover, we find that knockdown of CSN3 evidently accelerates STAT3 activation, and aggravates cerebral I/R injury in vivo. CONCLUSION CSN3 restricts neuroinflammatory responses during cerebral I/R injury through stabilizing SOCS3 protein and indicates that CSN3 a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- En Liang
- Department of Neurosurgery, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaojun Li
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wenjun Fu
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Changtong Zhao
- Department of Neurosurgery, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Baoying Yang
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, People's Republic of China
| | - Zhonghua Yang
- Centre for Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|