1
|
Pagani A, Thor D, Perozzo FAG, Sofo G, Panayi AC, Knoedler L, Knoedler S, Prantl L, Duscher D. Strike while the iron's hot? The role of iron chelators in skin regeneration. J Plast Reconstr Aesthet Surg 2024; 96:56-57. [PMID: 39059254 DOI: 10.1016/j.bjps.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany.
| | | | - Filippo A G Perozzo
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Padova University Hospital, Padua, Italy
| | - Giuseppe Sofo
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Padova University Hospital, Padua, Italy
| | - Adriana C Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Samuel Knoedler
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Dominik Duscher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Sintos AML, Cabrera HS. Network Pharmacology Reveals Curcuma aeruginosa Roxb. Regulates MAPK and HIF-1 Pathways to Treat Androgenetic Alopecia. BIOLOGY 2024; 13:497. [PMID: 39056691 PMCID: PMC11274231 DOI: 10.3390/biology13070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Androgenetic alopecia (AGA) is the most prevalent hair loss disorder worldwide, driven by excessive sensitivity or response to androgen. Herbal extracts, such as Curcuma aeruginosa Roxb., have shown promise in AGA treatment due to their anti-androgenic activities and hair growth effects. However, the precise mechanism of action remains unclear. Hence, this study aims to elucidate the active compounds, putative targets, and underlying mechanisms of C. aeruginosa for the therapy of AGA using network pharmacology and molecular docking. This study identified 66 bioactive compounds from C. aeruginosa, targeting 59 proteins associated with AGA. Eight hub genes were identified from the protein-protein interaction network, namely, CASP3, AKT1, AR, IL6, PPARG, STAT3, HIF1A, and MAPK3. Topological analysis of components-targets network revealed trans-verbenol, myrtenal, carvone, alpha-atlantone, and isoaromandendrene epoxide as the core components with potential significance in AGA treatment. The molecular docking verified the binding affinity between the hub genes and core compounds. Moreover, the enrichment analyses showed that C. aeruginosa is involved in hormone response and participates in HIF-1 and MAPK pathways to treat AGA. Overall, this study contributes to understanding the potential anti-AGA mechanism of C. aeruginosa by highlighting its multi-component interactions with several targets involved in AGA pathogenesis.
Collapse
Affiliation(s)
- Aaron Marbyn L. Sintos
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Heherson S. Cabrera
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
3
|
Yin CS, Minh Nguyen TT, Yi EJ, Zheng S, Bellere AD, Zheng Q, Jin X, Kim M, Park S, Oh S, Yi TH. Efficacy of probiotics in hair growth and dandruff control: A systematic review and meta-analysis. Heliyon 2024; 10:e29539. [PMID: 38698995 PMCID: PMC11064082 DOI: 10.1016/j.heliyon.2024.e29539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Background Probiotics are intellectually rewarding for the discovery of their potential as a source of functional food. Investigating the economic and beauty sector dynamics, this study conducted a comprehensive review of scholarly articles to evaluate the capacity of probiotics to promote hair growth and manage dandruff. Methods We used the PRISMA 2020 with Embase, Pubmed, ClinicalTrials.gov, Scopus, and ICTRP databases to investigate studies till May 2023. Meta-analyses utilizing the random effects model were used with odds ratios (OR) and standardized mean differences (SMD). Result Meta-analysis comprised eight randomized clinical trials and preclinical studies. Hair growth analysis found a non-significant improvement in hair count (SMD = 0.32, 95 % CI -0.10 to 0.75) and a significant effect on thickness (SMD = 0.92, 95 % CI 0.47 to 1.36). In preclinical studies, probiotics significantly induced hair follicle count (SMD = 3.24, 95 % CI 0.65 to 5.82) and skin thickness (SMD = 2.32, 95 % CI 0.47 to 4.17). VEGF levels increased significantly (SMD = 2.97, 95 % CI 0.80 to 5.13), while IGF-1 showed a non-significant inducement (SMD = 0.53, 95 % CI -4.40 to 5.45). For dandruff control, two studies demonstrated non-significant improvement in adherent dandruff (OR = 1.31, 95 % CI 0.13-13.65) and a significant increase in free dandruff (OR = 5.39, 95 % CI 1.50-19.43). Hair follicle count, VEGF, IGF-1, and adherent dandruff parameters were recorded with high heterogeneity. For the systematic review, probiotics have shown potential in improving hair growth and controlling dandruff through modulation of the immune pathway and gut-hair axis. The Wnt/β-catenin pathway, IGF-1 pathway, and VEGF are key molecular pathways in regulating hair follicle growth and maintenance. Conclusions This review found significant aspects exemplified by the properties of probiotics related to promoting hair growth and anti-dandruff effect, which serve as a roadmap for further in-depth studies to make it into pilot scales.
Collapse
Affiliation(s)
- Chang-Shik Yin
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Shengdao Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Arce Defeo Bellere
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Xiangji Jin
- Department of Pharmacology, School of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dong-daemun, Seoul, Republic of Korea
| | - Myeongju Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Sejic Park
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| | - Sarang Oh
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
- Snowwhitefactory Co, Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul, 06032, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Republic of Korea
| |
Collapse
|
4
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
5
|
A Novel Hair Restoration Technology Counteracts Androgenic Hair Loss and Promotes Hair Growth in A Blinded Clinical Trial. J Clin Med 2023; 12:jcm12020470. [PMID: 36675398 PMCID: PMC9861617 DOI: 10.3390/jcm12020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Androgenic alopecia (AGA) is a genetically predetermined condition that occurs as a result of stepwise miniaturization of the dermal papilla. During this process, the hair follicle suffers from increasing malnutrition and eventually dies, causing progressive hair loss. We recently highlighted that HIF-1α modulation may counteract hair loss. Here, we aim to demonstrate the positive influence of Tomorrowlabs HIF strengthening factor [HSF] hair restoration technology on hair biology in a monocentric blinded clinical trial over a total period of 9 months. A trial with 20 subjects (4 female and 16 male) and once-daily application of [HSF] hair restoration technology to the scalp was conducted. To assess the tolerability and efficacy of [HSF], testing included dermatological assessment, determination of hair loss by counting after combing, macro images of the head and TrichoScan evaluation of hair density as well as the proportion of anagen hair versus telogen hair. The clinical data show Tomorrowlabs [HSF] hair restoration to be safe and effective to counteract AGA. The use of Tomorrowlabs [HSF] hair restoration resulted in improvements in the clinical parameters of hair quality such as thickness (+7.2%), hair density (+14.3%) and shine and elasticity (+20.3%) during the test period. The effectiveness of the test product was further determined by a significant reduction in hair loss of an average of 66.8% in treatment-responsive subjects after 6 months and an increase in hair growth reaching up to 32.5%, with an average percentage change of 8.4% in all participants and 10.8% in the responsive patients (85% of the study cohort) after 9 months on TrichoScan evaluation. The hair growth cycle was harmonized with the result of an average anagen hair percentage increase of +8.0% and telogen hair percentage reduction of -14.0% shown in the test area. Applicable for both sexes in an alcohol-free formulation, beneficial to scalp health and free of complications or side effects, this novel product provides objectively measurable results counteracting hair loss paired with an improved look and feel of the hair.
Collapse
|
6
|
Sung JH. Effective and economical cell therapy for hair regeneration. Biomed Pharmacother 2023; 157:113988. [PMID: 36370520 DOI: 10.1016/j.biopha.2022.113988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
We reviewed and summarized the latest reports on the characteristics of stem cells and follicular cells that are under development for hair loss treatment. Compared with conventional medicine, cell therapy could be effective in the long term with a single treatment while having mild adverse effects. Adipose-derived stem cells (ASCs) have the advantages of easy access and large isolation amount compared with dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs), and promote hair growth through the paracrine effect. ASCs have a poor potential in hair neogenesis, therefore, methods to enhance trichogenecity of ASCs should be developed. DSCs can be isolated from the peribulbar dermal sheath cup, while having immune tolerance, and hair inductivity. Therefore, DSCs were first developed and finished the phase II clinical trial; however, the hair growth was not satisfactory. Considering that a single injection of DSCs is effective for at least 9 months in the clinical setting, they can be an alternative therapy for hair regeneration. Though DPCs are not yet studied in clinical trials, we should pay attention to DPCs, as hair loss is associated with gradual reduction of DPCs and DP cell numbers fluctuate over the hair cycle. DPCs could make new hair follicles with epidermal cells, and have an immunomodulatory function to enable allogeneic transplantation. In addition, we can expand large quantities of DPCs with hair inductivity using spheroid culture, hypoxia condition, and growth factor supplement. 'Off-the-shelf' DPC therapy could be effective and economical, and therefore promising for hair regeneration.
Collapse
Affiliation(s)
- Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon, South Korea; College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| |
Collapse
|
7
|
Soares P, Silva C, Chavarria D, Silva FSG, Oliveira PJ, Borges F. Drug discovery and amyotrophic lateral sclerosis: Emerging challenges and therapeutic opportunities. Ageing Res Rev 2023; 83:101790. [PMID: 36402404 DOI: 10.1016/j.arr.2022.101790] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major regulators of hypoxia and inflammation - HIF and NF-κB - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi-target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.
Collapse
Affiliation(s)
- Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Catia Silva
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filomena S G Silva
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Jara CP, de Andrade Berti B, Mendes NF, Engel DF, Zanesco AM, Pereira de Souza GF, de Medeiros Bezerra R, de Toledo Bagatin J, Maria-Engler SS, Morari J, Velander WH, Velloso LA, Araújo EP. Glutamic acid promotes hair growth in mice. Sci Rep 2021; 11:15453. [PMID: 34326383 PMCID: PMC8322389 DOI: 10.1038/s41598-021-94816-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Glutamic acid is the main excitatory neurotransmitter acting both in the brain and in peripheral tissues. Abnormal distribution of glutamic acid receptors occurs in skin hyperproliferative conditions such as psoriasis and skin regeneration; however, the biological function of glutamic acid in the skin remains unclear. Using ex vivo, in vivo and in silico approaches, we showed that exogenous glutamic acid promotes hair growth and keratinocyte proliferation. Topical application of glutamic acid decreased the expression of genes related to apoptosis in the skin, whereas glutamic acid increased cell viability and proliferation in human keratinocyte cultures. In addition, we identified the keratinocyte glutamic acid excitotoxic concentration, providing evidence for the existence of a novel skin signalling pathway mediated by a neurotransmitter that controls keratinocyte and hair follicle proliferation. Thus, glutamic acid emerges as a component of the peripheral nervous system that acts to control cell growth in the skin. These results raise the perspective of the pharmacological and nutritional use of glutamic acid to treat skin diseases.
Collapse
Affiliation(s)
- Carlos Poblete Jara
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil.
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil.
- University of Campinas, Campinas, Brazil.
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA.
| | - Beatriz de Andrade Berti
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Natália Ferreira Mendes
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Daiane Fátima Engel
- Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Ariane Maria Zanesco
- Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Gabriela Freitas Pereira de Souza
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Renan de Medeiros Bezerra
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Julia de Toledo Bagatin
- School of Pharmaceutical Sciences, Clinical Chemistry and Toxicology Department, University of São Paulo, São Paulo, Brazil
| | - Silvya Stuchi Maria-Engler
- School of Pharmaceutical Sciences, Clinical Chemistry and Toxicology Department, University of São Paulo, São Paulo, Brazil
| | - Joseane Morari
- Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - William H Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
| | - Lício A Velloso
- Faculty of Medical Sciences, University of Campinas, UNICAMP, Campinas, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| | - Eliana Pereira Araújo
- Faculty of Nursing, University of Campinas, UNICAMP, Tessalia Vieira de Camargo St., 126, Campinas, SP, 13083-887, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Brazil
- University of Campinas, Campinas, Brazil
| |
Collapse
|
9
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|