1
|
Pereira ENGDS, de Araujo BP, Rodrigues KL, Silvares RR, Guimarães FV, Martins CSM, Flores EEI, Silva PMRE, Daliry A. Cholesterol Exacerbates the Pathophysiology of Non-Alcoholic Steatohepatitis by Upregulating Hypoxia-Inducible Factor 1 and Modulating Microcirculatory Dysfunction. Nutrients 2023; 15:5034. [PMID: 38140293 PMCID: PMC10745917 DOI: 10.3390/nu15245034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol is a pivotal lipotoxic molecule that contributes to the progression of Non-Alcoholic Steatohepatitis NASH). Additionally, microcirculatory changes are critical components of Non-Alcoholic Fatty Liver Disease (NAFLD) pathogenesis. This study aimed to investigate the role of cholesterol as an insult that modulates microcirculatory damage in NAFLD and the underlying mechanisms. The experimental model was established in male C57BL/6 mice fed a high-fat high-carbohydrate (HFHC) diet for 39 weeks. Between weeks 31-39, 2% cholesterol was added to the HFHC diet in a subgroup of mice. Leukocyte recruitment and hepatic stellate cells (HSC) activation in microcirculation were assessed using intravital microscopy. The hepatic microvascular blood flow (HMBF) was measured using laser speckle flowmetry. High cholesterol levels exacerbated hepatomegaly, hepatic steatosis, inflammation, fibrosis, and leukocyte recruitment compared to the HFHC group. In addition, cholesterol decreased the HMBF-cholesterol-induced activation of HSC and increased HIF1A expression in the liver. Furthermore, cholesterol promoted a pro-inflammatory cytokine profile with a Th1-type immune response (IFN-γ/IL-4). These findings suggest cholesterol exacerbates NAFLD progression through microcirculatory dysfunction and HIF1A upregulation through hypoxia and inflammation. This study highlights the importance of cholesterol-induced lipotoxicity, which causes microcirculatory dysfunction associated with NAFLD pathology, thus reinforcing the potential of lipotoxicity and microcirculation as therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Evelyn Nunes Goulart da Silva Pereira
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Beatriz Peres de Araujo
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Karine Lino Rodrigues
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Raquel Rangel Silvares
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Fernanda Verdini Guimarães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carolina Souza Machado Martins
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Edgar Eduardo Ilaquita Flores
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | | | - Anissa Daliry
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| |
Collapse
|
2
|
Simvastatin Improves Microcirculatory Function in Nonalcoholic Fatty Liver Disease and Downregulates Oxidative and ALE-RAGE Stress. Nutrients 2022; 14:nu14030716. [PMID: 35277075 PMCID: PMC8838100 DOI: 10.3390/nu14030716] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Increased reactive oxidative stress, lipid peroxidation, inflammation, and fibrosis, which contribute to tissue damage and development and progression of nonalcoholic liver disease (NAFLD), play important roles in microcirculatory disorders. We investigated the effect of the modulatory properties of simvastatin (SV) on the liver and adipose tissue microcirculation as well as metabolic and oxidative stress parameters, including the advanced lipoxidation end product–receptors of advanced glycation end products (ALE-RAGE) pathway. SV was administered to an NAFLD model constructed using a high-fat–high-carbohydrate diet (HFHC). HFHC caused metabolic changes indicative of nonalcoholic steatohepatitis; treatment with SV protected the mice from developing NAFLD. SV prevented microcirculatory dysfunction in HFHC-fed mice, as evidenced by decreased leukocyte recruitment to hepatic and fat microcirculation, decreased hepatic stellate cell activation, and improved hepatic capillary network architecture and density. SV restored basal microvascular blood flow in the liver and adipose tissue and restored the endothelium-dependent vasodilatory response of adipose tissue to acetylcholine. SV treatment restored antioxidant enzyme activity and decreased lipid peroxidation, ALE-RAGE pathway activation, steatosis, fibrosis, and inflammatory parameters. Thus, SV may improve microcirculatory function in NAFLD by downregulating oxidative and ALE-RAGE stress and improving steatosis, fibrosis, and inflammatory parameters.
Collapse
|
3
|
Lino Rodrigues K, Vieira Dias Da Silva V, Nunes Goulart da Silva Pereira E, Rangel Silvares R, Peres de Araujo B, Eduardo Ilaquita Flores E, Ramos IP, Pereira Borges J, Fernandes-Santos C, Daliry A. Aerobic Exercise Training Improves Microvascular Function and Oxidative Stress Parameters in Diet-Induced Type 2 Diabetic Mice. Diabetes Metab Syndr Obes 2022; 15:2991-3005. [PMID: 36200064 PMCID: PMC9527816 DOI: 10.2147/dmso.s365496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Type 2 diabetic (T2D) patients have liver and adipose tissue microcirculation disturbances associated with metabolic dysfunction and disease progression. However, the potential role of aerobic training on hepatic and white adipose tissue (WAT) microcirculation and the underlying mechanisms have not been elucidated to date. Therefore, we investigated the role of aerobic training on liver and WAT microcirculation and AGE-RAGE modulation in T2D mice. METHODS The control group (CTL) was fed standard chow, and T2D was induced by feeding male C57BL/6 a high-fat, high-carbohydrate diet for 24 weeks. In the following 12 weeks, mice underwent aerobic training (CTL EX and T2D EX groups), or were kept sedentary (CTL and T2D groups). We assessed metabolic parameters, biochemical markers, oxidative damage, the AGE-RAGE axis, hepatic steatosis, hepatic stellate cells activation (HSC) and liver and WAT microcirculation. RESULTS Hepatic microcirculation was improved in T2D EX mice which were associated with improvements in body, liver and fat mass, blood pressure, hepatic steatosis and fibrosis, and decreased HSC and AGE-RAGE activation. In contrast, improvement in WAT microcirculation, that is, decreased leukocyte recruitment and increased perfusion, was associated with increased catalase antioxidant activity. CONCLUSION Physical training improves hepatic and adipose tissue microcirculatory dysfunction associated with T2D, likely due to downregulation of AGE-RAGE axis, decreased HSC activation and increased antioxidant activity.
Collapse
Affiliation(s)
- Karine Lino Rodrigues
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | - Raquel Rangel Silvares
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Beatriz Peres de Araujo
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Isalira Peroba Ramos
- National Center of Structural Biology and Bio-imaging, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Caroline Fernandes-Santos
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Department of Basic Sciences, Federal Fluminense University, Nova Friburgo, RJ, Brazil
| | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Correspondence: Anissa Daliry, Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Pavilhão Ozorio de Almeida Av. Brasil, 4365 (Room 14), Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil, Tel +55 212562-1312, Email
| |
Collapse
|