1
|
Yu X, Li S, Mai W, Hua X, Sun M, Lai M, Zhang D, Xiao Z, Wang L, Shi C, Luo L, Cai L. Pediatric diffuse intrinsic pontine glioma radiotherapy response prediction: MRI morphology and T2 intensity-based quantitative analyses. Eur Radiol 2024; 34:7962-7972. [PMID: 38907098 PMCID: PMC11557687 DOI: 10.1007/s00330-024-10855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES An easy-to-implement MRI model for predicting partial response (PR) postradiotherapy for diffuse intrinsic pontine glioma (DIPG) is lacking. Utilizing quantitative T2 signal intensity and introducing a visual evaluation method based on T2 signal intensity heterogeneity, and compared MRI radiomic models for predicting radiotherapy response in pediatric patients with DIPG. METHODS We retrospectively included patients with brainstem gliomas aged ≤ 18 years admitted between July 2011 and March 2023. Applying Response Assessment in Pediatric Neuro-Oncology criteria, we categorized patients into PR and non-PR groups. For qualitative analysis, tumor heterogeneity vision was classified into four grades based on T2-weighted images. Quantitative analysis included the relative T2 signal intensity ratio (rT2SR), extra pons volume ratio, and tumor ring-enhancement volume. Radiomic features were extracted from T2-weighted and T1-enhanced images of volumes of interest. Univariate analysis was used to identify independent variables related to PR. Multivariate logistic regression was performed using significant variables (p < 0.05) from univariate analysis. RESULTS Of 140 patients (training n = 109, and test n = 31), 64 (45.7%) achieved PR. The AUC of the predictive model with extrapontine volume ratio, rT2SRmax-min (rT2SRdif), and grade was 0.89. The AUCs of the T2-weighted and T1WI-enhanced models with radiomic signatures were 0.84 and 0.81, respectively. For the 31 DIPG test sets, the AUCs were 0.91, 0.83, and 0.81, for the models incorporating the quantitative features, radiomic model (T2-weighted images, and T1W1-enhanced images), respectively. CONCLUSION Combining T2-weighted quantification with qualitative and extrapontine volume ratios reliably predicted pediatric DIPG radiotherapy response. CLINICAL RELEVANCE STATEMENT Combining T2-weighted quantification with qualitative and extrapontine volume ratios can accurately predict diffuse intrinsic pontine glioma (DIPG) radiotherapy response, which may facilitate personalized treatment and prognostic assessment for patients with DIPG. KEY POINTS Early identification is crucial for radiotherapy response and risk stratification in diffuse intrinsic pontine glioma. The model using tumor heterogeneity and quantitative T2 signal metrics achieved an AUC of 0.91. Using a combination of parameters can effectively predict radiotherapy response in this population.
Collapse
Affiliation(s)
- Xiaojun Yu
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Shaoqun Li
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Wenfeng Mai
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Xiaoyu Hua
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Mengnan Sun
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Mingyao Lai
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Dong Zhang
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Lichao Wang
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Changzheng Shi
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Liangping Luo
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Linbo Cai
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China.
| |
Collapse
|
2
|
Onishi S, Kojima M, Yamasaki F, Amatya VJ, Yonezawa U, Taguchi A, Ozono I, Go Y, Takeshima Y, Hiyama E, Horie N. T2-FLAIR mismatch sign, an imaging biomarker for CDKN2A-intact in non-enhancing astrocytoma, IDH-mutant. Neurosurg Rev 2024; 47:412. [PMID: 39117984 PMCID: PMC11310237 DOI: 10.1007/s10143-024-02632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION The WHO classification of central nervous system tumors (5th edition) classified astrocytoma, IDH-mutant accompanied with CDKN2A/B homozygous deletion as WHO grade 4. Loss of immunohistochemical (IHC) staining for methylthioadenosine phosphorylase (MTAP) was developed as a surrogate marker for CDKN2A-HD. Identification of imaging biomarkers for CDKN2A status is of immense clinical relevance. In this study, we explored the association between radiological characteristics of non-enhancing astrocytoma, IDH-mutant to the CDKN2A/B status. METHODS Thirty-one cases of astrocytoma, IDH-mutant with MTAP results by IHC were included in this study. The status of CDKN2A was diagnosed by IHC staining for MTAP in all cases, which was further confirmed by comprehensive genomic analysis in 12 cases. The T2-FLAIR mismatch sign, cystic component, calcification, and intratumoral microbleeding were evaluated. The relationship between the radiological features and molecular pathological diagnosis was analyzed. RESULTS Twenty-six cases were identified as CDKN2A-intact while 5 cases were CDKN2A-HD. The presence of > 33% and > 50% T2-FLAIR mismatch was observed in 23 cases (74.2%) and 14 cases (45.2%), respectively, and was associated with CDKN2A-intact astrocytoma (p = 0.0001, 0.0482). None of the astrocytoma, IDH-mutant with CDKN2A-HD showed T2-FLAIR mismatch sign. Cystic component, calcification, and intratumoral microbleeding were not associated with CDKN2A status. CONCLUSION In patients with non-enhancing astrocytoma, IDH-mutant, the T2-FLAIR mismatch sign is a potential imaging biomarker for the CDKN2A-intact subtype. This imaging biomarker may enable preoperative prediction of CDKN2A status among astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Masato Kojima
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan.
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Iori Ozono
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| | - Yukari Go
- Medical Division Technical Center, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiso Hiyama
- Department of Pediatric Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8551, Hiroshima, Japan
| |
Collapse
|
3
|
Dagher SA, Lochner RH, Ozkara BB, Schomer DF, Wintermark M, Fuller GN, Ucisik FE. The T2-FLAIR mismatch sign in oncologic neuroradiology: History, current use, emerging data, and future directions. Neuroradiol J 2024; 37:441-453. [PMID: 37924213 PMCID: PMC11366202 DOI: 10.1177/19714009231212375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
The T2-Fluid-Attenuated Inversion Recovery (T2-FLAIR) mismatch sign is a radiogenomic marker that is easily discernible on preoperative conventional MR imaging. Application of strict criteria (adult population, cerebral hemisphere location, and classic imaging morphology) permits the noninvasive preoperative diagnosis of isocitrate dehydrogenase (IDH)-mutant 1p/19q-non-codeleted diffuse astrocytoma with near-perfect specificity, albeit with variably low sensitivity. This leads to improved preoperative planning and patient counseling. More recent research has shown that the application of less strict criteria compromises the near-perfect specificity of the sign but remains adequate for ruling out IDH-wildtype (glioblastoma) phenotype, which bears a far grimmer prognosis compared to IDH-mutant diffuse astrocytic disease. In this review, we elaborate on the various definitions of the T2-FLAIR mismatch sign present in the literature, illustrate these with images obtained at a comprehensive cancer center, discuss the potential of the mismatch sign for application to certain pediatric-type brain tumors, namely dysembryoplastic neuroepithelial tumor and diffuse midline glioma, and elaborate upon the clinical, histologic, and molecular associations of the T2-FLAIR mismatch sign as recognized to date. Finally, the sign's correlates in diffusion- and perfusion-weighted imaging are presented, and opportunities to further maximize the diagnostic and prognostic applications of the sign in the context of the 2021 revision of the WHO Classification of Central Nervous System Tumors are discussed.
Collapse
Affiliation(s)
- Samir A Dagher
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riley Hideo Lochner
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burak Berksu Ozkara
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donald F Schomer
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory N Fuller
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Tosi U, Souweidane M. Diffuse Midline Gliomas: Challenges and New Strategies in a Changing Clinical Landscape. Cancers (Basel) 2024; 16:219. [PMID: 38201646 PMCID: PMC10778507 DOI: 10.3390/cancers16010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) was first described by Harvey Cushing, the father of modern neurosurgery, a century ago. Since then, the classification of this tumor changed significantly, as it is now part of the broader family of diffuse midline gliomas (DMGs), a heterogeneous group of tumors of midline structures encompassing the entire rostro-caudal space, from the thalamus to the spinal cord. DMGs are characterized by various epigenetic events that lead to chromatin remodeling similarities, as two decades of studies made possible by increased tissue availability showed. This new understanding of tumor (epi)biology is now driving novel clinical trials that rely on targeted agents, with finally real hopes for a change in an otherwise unforgiving prognosis. This biological discovery is being paralleled with equally exciting work in therapeutic drug delivery. Invasive and noninvasive platforms have been central to early phase clinical trials with a promising safety track record and anecdotal benefits in outcome.
Collapse
Affiliation(s)
- Umberto Tosi
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Onishi S, Ohba S, Isobe N, Ito Y, Takano M, Maeda Y, Horie N. T1-T2 Mismatch Sign as a Predictor of Ipsilateral Ischemic Change After Carotid Artery Stenting. World Neurosurg 2023; 179:e450-e457. [PMID: 37660840 DOI: 10.1016/j.wneu.2023.08.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Magnetic resonance (MR)-plaque imaging reflects the characteristics of carotid plaque. We evaluated the relationship between MR-plaque images and ischemic change after carotid artery stenting (CAS). METHODS MR-plaque images were acquired from patients with carotid artery stenosis before CAS treatment. We calculated the relative signal intensity of plaque components compared with that of the sternocleidomastoid muscle and evaluated the presence/absence of T1-T2 mismatch and match sign. We then assessed the appearance of new ischemic lesions after CAS on diffusion-weighted imaging (DWI). Factors associated with the appearance of a high-intensity lesion on DWI were retrospectively analyzed. RESULTS A total of 64 patients with carotid artery stenoses treated with CAS were included in this study. In univariate analysis, T1-T2 mismatch sign was associated with the appearance of high-intensity lesions on DWI after CAS (odds ratio [OR], 12.00; 95% confidence interval [CI], 3.593-40.072; P < 0.0001), whereas T1-T2 match sign and high intensity on T2-weighted imaging were negatively associated (OR, 0.061, 95% CI, 0.007-0.502, P = 0.009 and OR, 0.085; 95% CI, 0.022-0.334, P = 0.0004, respectively). In multivariate logistic regression analysis, T1-T2 mismatch sign was independently associated with the appearance of a high-intensity lesion on DWI after CAS (OR, 16.695; 95% CI, 1.324-210.52; P = 0.0295). CONCLUSIONS T1-T2 mismatch sign on MR-plaque imaging is significantly associated with the appearance of new ischemic lesions after CAS. T1-T2 mismatch sign may be useful in considering treatment strategies for carotid artery stenosis.
Collapse
Affiliation(s)
- Shumpei Onishi
- Department of Neurosurgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan; Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Shinji Ohba
- Department of Neurosurgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Naoyuki Isobe
- Department of Neurosurgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Yoko Ito
- Department of Neurosurgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Motoki Takano
- Department of Neurosurgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Yugo Maeda
- Department of Neurosurgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Nagase T, Ishida J, Sasada S, Sasaki T, Otani Y, Yabuno S, Fujii K, Uneda A, Yasuhara T, Date I. IDH-mutant Astrocytoma Arising in the Brainstem with Symptom Improvement by Foramen Magnum Decompression: A Case Report. NMC Case Rep J 2023; 10:75-80. [PMID: 37065877 PMCID: PMC10101703 DOI: 10.2176/jns-nmc.2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/10/2023] [Indexed: 04/18/2023] Open
Abstract
Diffusely infiltrative midline gliomas are known to have a poor prognosis. The standard treatment for typical diffuse midline glioma in the pons is local radiotherapy as surgical resection is inappropriate. This case reports a brainstem glioma in which stereotactic biopsy and foramen magnum decompression were concomitantly performed to confirm the diagnosis and improve symptoms. A 23-year-old woman was referred to our department with a chief complaint of headache for six months. Magnetic resonance imaging (MRI) showed diffuse T2 hyperintense swelling of the brainstem with the pons as the main locus. Enlargement of the lateral ventricles was observed because of cerebrospinal fluid obstruction out of the posterior fossa. This was atypical for a diffuse midline glioma in terms of the longstanding slow progression of symptoms and patient age. Stereotactic biopsy was performed for diagnosis, and foramen magnum decompression (FMD) was concomitantly performed to treat the obstructive hydrocephalus. The histological diagnosis was astrocytoma, IDH-mutant. Post-surgery, the patient's symptoms were relieved, and she was discharged on the fifth day after surgery. The hydrocephalus was resolved, and the patient returned to normal life without any symptoms. The tumor size follow-up with MRI demonstrated no marked change for 12 months. Even though diffuse midline glioma is considered to have a poor prognosis, clinicians should contemplate if it is atypical. In atypical cases like the one described herein, surgical treatment may contribute to pathological diagnosis and symptom improvement.
Collapse
Affiliation(s)
- Takayuki Nagase
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| |
Collapse
|