1
|
Pratt SJP, Plunkett CM, Kuzu G, Trinh T, Barbara J, Choconta P, Quackenbush D, Huynh T, Smith A, Barnes SW, New J, Pierce J, Walker JR, Mainquist J, King FJ, Elliott J, Hammack S, Decker RS. A high throughput cell stretch device for investigating mechanobiology in vitro. APL Bioeng 2024; 8:026129. [PMID: 38938688 PMCID: PMC11210978 DOI: 10.1063/5.0206852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanobiology is a rapidly advancing field, with growing evidence that mechanical signaling plays key roles in health and disease. To accelerate mechanobiology-based drug discovery, novel in vitro systems are needed that enable mechanical perturbation of cells in a format amenable to high throughput screening. Here, both a mechanical stretch device and 192-well silicone flexible linear stretch plate were designed and fabricated to meet high throughput technology needs for cell stretch-based applications. To demonstrate the utility of the stretch plate in automation and screening, cell dispensing, liquid handling, high content imaging, and high throughput sequencing platforms were employed. Using this system, an assay was developed as a biological validation and proof-of-concept readout for screening. A mechano-transcriptional stretch response was characterized using focused gene expression profiling measured by RNA-mediated oligonucleotide Annealing, Selection, and Ligation with Next-Gen sequencing. Using articular chondrocytes, a gene expression signature containing stretch responsive genes relevant to cartilage homeostasis and disease was identified. The possibility for integration of other stretch sensitive cell types (e.g., cardiovascular, airway, bladder, gut, and musculoskeletal), in combination with alternative phenotypic readouts (e.g., protein expression, proliferation, or spatial alignment), broadens the scope of high throughput stretch and allows for wider adoption by the research community. This high throughput mechanical stress device fills an unmet need in phenotypic screening technology to support drug discovery in mechanobiology-based disease areas.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | | | - Guray Kuzu
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joshua Barbara
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Doug Quackenbush
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Truc Huynh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Anders Smith
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joel New
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Pierce
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - John R. Walker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Mainquist
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Frederick J. King
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Jimmy Elliott
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Rebekah S. Decker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| |
Collapse
|
2
|
Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Muthu S. Beginning of the era of Organ-on-Chip models in osteoarthritis research. J Clin Orthop Trauma 2024; 52:102422. [PMID: 38708089 PMCID: PMC11067495 DOI: 10.1016/j.jcot.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by the progressive breakdown of joint cartilage and underlying bone, affecting millions globally. Traditional research models, including in-vitro cell cultures and in-vivo animal studies, have provided valuable insights but exhibit limitations in replicating the complex human joint environment. This review article focuses on the transformative role of Organ-on-Chip (OoC) and Joint-on-Chip (JoC) technologies in OA research. OoC and JoC models, rooted in microfluidics, integrate cellular biology with engineered environments to create dynamic, physiologically relevant models that closely resemble human tissues and organs. These models enable an accurate depiction of pathogenesis, offering deeper insights into molecular and cellular mechanisms driving the disease. This review explores the evolution of OoC technology in OA research, highlighting its contributions to disease modeling, therapeutic discovery, and personalized medicine. It delves into the design concepts, fabrication techniques, and integration strategies of joint components in JoC models, emphasizing their role in accurately mimicking joint tissues and facilitating the study of intricate cellular interactions. The article also discusses the significant advancements made in OA research through published JoC models and projects the future scope of these technologies, including their potential in personalized medicine and high-throughput drug screening. The evolution of JoC models signifies a paradigm shift in OA research, offering a promising path toward more effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, 609602, Puducherry, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Karur, 639004, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore, 641045, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| |
Collapse
|
3
|
Steinecker-Frohnwieser B, Lohberger B, Toegel S, Windhager R, Glanz V, Kratschmann C, Leithner A, Weigl L. Activation of the Mechanosensitive Ion Channels Piezo1 and TRPV4 in Primary Human Healthy and Osteoarthritic Chondrocytes Exhibits Ion Channel Crosstalk and Modulates Gene Expression. Int J Mol Sci 2023; 24:ijms24097868. [PMID: 37175575 PMCID: PMC10178441 DOI: 10.3390/ijms24097868] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease causing pain and functional limitations. Physical activity as a clinically relevant, effective intervention alleviates pain and promotes joint function. In chondrocytes, perception and transmission of mechanical signals are controlled by mechanosensitive ion channels, whose dysfunction in OA chondrocytes is leading to disease progression. Signaling of mechanosensitive ion channels Piezo/TRPV4 was analyzed by Yoda1/GSK1016790A application and calcium-imaging of Fura-2-loaded chondrocytes. Expression analysis was determined by qPCR and immunofluorescence in healthy vs. OA chondrocytes. Chondrocytes were mechanically stimulated using the Flexcell™ technique. Yoda1 and GSK1016790A caused an increase in intracellular calcium [Ca2+]i for Yoda1, depending on extracellularly available Ca2+. When used concomitantly, the agonist applied first inhibited the effect of subsequent agonist application, indicating mutual interference between Piezo/TRPV4. Yoda1 increased the expression of metalloproteinases, bone-morphogenic protein, and interleukins in healthy and OA chondrocytes to a different extent. Flexcell™-induced changes in the expression of MMPs and ILs differed from changes induced by Yoda1. We conclude that Piezo1/TRPV4 communicate with each other, an interference that may be impaired in OA chondrocytes. It is important to consider that mechanical stimulation may have different effects on OA depending on its intensity.
Collapse
Affiliation(s)
- Bibiane Steinecker-Frohnwieser
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Thorerstraße 26, 5760 Saalfelden, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Spitalgasse 23, 1090 Vienna, Austria
| | - Birgit Lohberger
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Spitalgasse 23, 1090 Vienna, Austria
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| | - Stefan Toegel
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Spitalgasse 23, 1090 Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Veronika Glanz
- Department of Special Anaesthesia and Pain Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Cornelia Kratschmann
- Department of Special Anaesthesia and Pain Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| | - Lukas Weigl
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Spitalgasse 23, 1090 Vienna, Austria
- Department of Special Anaesthesia and Pain Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
4
|
Jess R, Ling T, Xiong Y, Wright CJ, Zhao F. Mechanical environment for in vitro cartilage tissue engineering assisted by in silico models. BIOMATERIALS TRANSLATIONAL 2023; 4:18-26. [PMID: 37206302 PMCID: PMC10189812 DOI: 10.12336/biomatertransl.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 05/21/2023]
Abstract
Mechanobiological study of chondrogenic cells and multipotent stem cells for articular cartilage tissue engineering (CTE) has been widely explored. The mechanical stimulation in terms of wall shear stress, hydrostatic pressure and mechanical strain has been applied in CTE in vitro. It has been found that the mechanical stimulation at a certain range can accelerate the chondrogenesis and articular cartilage tissue regeneration. This review explicitly focuses on the study of the influence of the mechanical environment on proliferation and extracellular matrix production of chondrocytes in vitro for CTE. The multidisciplinary approaches used in previous studies and the need for in silico methods to be used in parallel with in vitro methods are also discussed. The information from this review is expected to direct facial CTE research, in which mechanobiology has not been widely explored yet.
Collapse
Affiliation(s)
- Rob Jess
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
| | - Tao Ling
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Corresponding authors: Feihu Zhao, ; Yi Xiong,
| | - Chris J. Wright
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Feihu Zhao
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
- Corresponding authors: Feihu Zhao, ; Yi Xiong,
| |
Collapse
|
5
|
Banh L, Cheung KK, Chan MWY, Young EWK, Viswanathan S. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis Cartilage 2022; 30:1050-1061. [PMID: 35460872 DOI: 10.1016/j.joca.2022.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Joint-on-a-chip (JOC) models are powerful tools that aid in osteoarthritis (OA) research. These microfluidic devices apply emerging organ-on-a-chip technology to recapitulate a multifaceted joint tissue microenvironment. JOCs address the need for advanced, dynamic in vitro models that can mimic the in vivo tissue environment through joint-relevant biomechanical or fluidic integration, an aspect that existing in vitro OA models lack. There are existing review articles on OA models that focus on animal, tissue explant, and two-dimensional and three-dimensional (3D) culture systems, including microbioreactors and 3D printing technology, but there has been limited discussion of JOC models. The aim of this article is to review recent developments in human JOC technology and identify gaps for future advancements. Specifically, mechanical stimulation systems that mimic articular movement, multi-joint tissue cultures that enable crosstalk, and systems that aim to capture aspects of OA inflammation by incorporating immune cells are covered. The development of an advanced JOC model that captures the dynamic joint microenvironment will improve testing and translation of potential OA therapeutics.
Collapse
Affiliation(s)
- L Banh
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - K K Cheung
- Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
| | - M W Y Chan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - E W K Young
- Institute of Biomedical Engineering, University of Toronto, Canada; Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
| | - S Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Canada.
| |
Collapse
|
6
|
Gilbert RJ, Sheng G, Viebahn C, Liebau S, Marra KG, De Bartolo L. Inaugural Young Investigator Issue for Cells Tissues Organs. Cells Tissues Organs 2021; 211:638-640. [PMID: 34348277 DOI: 10.1159/000518410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Gottingen, Gottingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy and Developmental Biology, University of Tübingen, Tübingen, Germany
| | - Kacey G Marra
- Departments of Plastic Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Loredana De Bartolo
- Institute of Membrane Technology, National Research Council of Italy, Rome, Italy
| |
Collapse
|